
Gavin Zheng
Longxiang Gao
Liqun Huang
Jian Guan

Ethereum
Smart Contract
Development
in Solidity

Ethereum Smart Contract Development in Solidity

Gavin Zheng • Longxiang Gao • Liqun Huang •

Jian Guan

Ethereum Smart Contract
Development in Solidity

Gavin Zheng
Nenglian Technology Co. Ltd.
Beijing, China

Longxiang Gao
School of Information Technology
Deakin University
Burwood, VIC, Australia

Liqun Huang
Huazhong University of Science
and Technology
Wuhan, Hubei, China

Jian Guan
Muhua Technology Co. Ltd.
Beijing, China

ISBN 978-981-15-6217-4 ISBN 978-981-15-6218-1 (eBook)
https://doi.org/10.1007/978-981-15-6218-1

© Springer Nature Singapore Pte Ltd. 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-6218-1

Preface

Smart contract is one of the cornerstones of blockchain technology. Among all the
smart contract programming languages in market (such as Viper, Bamboo, etc.),
Solidity running on Ethereum Virtual Machine (EVM) is the most popular one in
terms of number of users, developer community, scope of use, number of contracts
in use, and the public recognition. This book introduces the Solidity programming
language from scratch and explains the core features of Solidity in detail.

About the Book Structure

The book is organized in an orderly way as below:

Part I: Preliminary
Chapter 1: Concepts and terms of Ethereum
Chapter 2: Configuration and installation of Solidity development environment
Part II: Solidity Basics
Chapter 3: Basics of Solidity: keywords, statements, modifiers, etc.
Chapter 4: Popular Ethereum Request for Comments (ERC) protocols
Part III: Solidity Advanced Topics
Chapter 5: ABI specification and coding
Chapter 6: Advanced topics of Solidity programming: design pattern, GAS,

assembly
Chapter 7: Upgradeable smart contract design and implementation
Chapter 8: Security of Solidity programming and best practice
Part IV: Application
Chapter 9: Decentralized Application (DApp) programming technique
Chapter 10: Testing and debugging
Part V: Prospect
Chapter 11: Primer of Web Assembly programming which is believed to be the

future

v

In Part I, Chap. 1 introduces all the basic concepts and terms of Ethereum used in
the book for understanding of subsequent content; you can skip it if you already
know them well. And Chap. 2 tells you how to set up Solidity development and
testing environment. After all the preparation work being done, Part II guides you
through Solidity language details and coding simple contracts. To develop complex
contracts, Part III collects all the information you need: interface, design pattern,
GAS, assembly, upgrade, security, and best practices. In Part IV, the authors shed
some light on developing DApp which showcases how to interact with Solidity
contract. At last, the book also explores WASM a little bit, which is thought to be a
future star in smart contract programming.

Beijing, China Gavin Zheng
Burwood, VIC, Australia Longxiang Gao
Wuhan, Hubei, China Liqun Huang
Beijing, China Jian Guan
April, 2020

vi Preface

Intended Audience

The book is intended for readers with prior experience of using at least one object-
oriented programming language (e.g., C++, Java, etc.). If you have a solid under-
standing of object-oriented concepts, such as inheritance, polymorphism, etc., and
you desire to jump into the blockchain industry and ramp up on smart contract
development on Ethereum platform, this book is the best fit for you. Stepping from
this book, the readers should dive deep into Ethereum Virtual Machine (EVM) and
Web Assembly (WASM) for continuing study.

vii

Acknowledgement

I would like to thank the co-authors: Dr. Jian Guan—CTO of xuetangx.com,
Dr. Longxiang Gao at Deakin University, Geelong, VIC, Australia, and Associate
Professor Liqun Huang at Huazhong University of Science and Technology
(HUST), Wuhan, PRC, for their valuable efforts and contributions in writing this
book. Besides, I would like to thank the responsible editor of this book—Dr. Wei
Zhu who organizes to turn the initiative into reality.

ix

Contents

Part I Preliminary

1 Basic Concepts . 3
1.1 Ethereum . 3

1.1.1 Asynchronized Cryptography 4
1.1.2 Cryptographic Hash Function 7
1.1.3 Peer-to-Peer Network . 8
1.1.4 Blockchain . 8
1.1.5 Ethereum Virtual Machine (EVM) 9
1.1.6 Node . 9
1.1.7 Miner . 9
1.1.8 Proof of Work (PoW) . 10
1.1.9 Decentralized App (DApp) . 10
1.1.10 Solidity . 10

1.2 Smart Contract . 11
1.3 GAS . 11

1.3.1 Why GAS? . 12
1.3.2 Components of GAS . 13

1.4 Ether (ETH) . 14
1.5 Account . 14
1.6 Transaction . 15

2 Preparation . 17
2.1 A Simple Example . 17
2.2 Tool Preparation . 18

2.2.1 Development Environment . 18
2.2.2 Development Tools . 23
2.2.3 Blockchain Explorer . 38

xi

2.3 Testing Environment . 40
2.3.1 Metamask Switching Between Testing Environments . . 41
2.3.2 Obtain Testing Coins . 41
2.3.3 Connect to Testing Environment 41

2.4 Ethereum Source Code Compilation . 44

Part II Solidity Basics

3 Solidity Basics . 49
3.1 Sol File Structure . 49

3.1.1 Pragma . 49
3.1.2 Import . 49
3.1.3 Comment . 50
3.1.4 Contract . 51
3.1.5 Library . 51
3.1.6 Interface . 52

3.2 Structure of Contract . 52
3.3 Variable . 53

3.3.1 Value Type . 53
3.3.2 Reference Type . 55
3.3.3 Mapping . 58
3.3.4 Special Case . 58

3.4 Operators . 59
3.5 Statement . 60

3.5.1 Conditional Statement . 60
3.5.2 Loop . 61
3.5.3 Miscellaneous . 61

3.6 Data Location . 61
3.7 Modifier . 63

3.7.1 Standard Modifier . 64
3.7.2 Self-defined Modifier . 68

3.8 Event . 70
3.8.1 Return Value to UI . 71
3.8.2 Async Trigger with Data . 72
3.8.3 Cheap Storage . 72
3.8.4 Indexed Parameter in Event . 74

3.9 Inheritance . 74
3.9.1 Single Inheritance . 74
3.9.2 Multi-Inheritance . 75

3.10 Miscellaneous . 76
3.10.1 Built-in Variable . 76
3.10.2 Special Unit . 79
3.10.3 Type Cast and Inference . 80
3.10.4 Exception . 82
3.10.5 Assembly . 82

xii Contents

4 Solidity Advanced Topics . 85
4.1 Keyword “This” . 85
4.2 ERC20 Interface . 86

4.2.1 Methods . 87
4.2.2 Events . 89
4.2.3 OpenZeppline . 89

4.3 ERC721 Interface . 91
4.3.1 ERC721 Protocol . 91
4.3.2 Metadata . 104
4.3.3 Enumerable Extension . 106
4.3.4 ERC165 Protocol . 111

4.4 Call Between Contracts . 113
4.4.1 Function Call . 113
4.4.2 Dependency Injection . 115
4.4.3 Message Calls . 115
4.4.4 Return Value of Contract Call 119

4.5 Basic Algorithms . 121
4.6 Using Golang to Interact with Contract 124

4.6.1 Contract Source . 125
4.6.2 Project Creation . 126
4.6.3 Using Golang to Interact with Contract 126
4.6.4 Local Test . 127
4.6.5 Connect to an Ethereum Node 131
4.6.6 Create JSON Key for Our Account 132
4.6.7 Validation . 132

Part III Solidity Advanced Features

5 Application Binary Interface (ABI) . 139
5.1 Memory Structure . 139
5.2 Function Selector . 139
5.3 Type Definition . 140
5.4 Data Presentation in EVM . 141

5.4.1 Presentation of Fixed-Length Data Type 141
5.4.2 Presentation of Dynamic Data Type 143

5.5 Encode . 146
5.5.1 A Simple Example . 147
5.5.2 An Example of External Call 148
5.5.3 ABI Encode for External Method Call 151

5.6 ABI Programming . 157

Contents xiii

6 Operation Principles of Smart Contract . 159
6.1 Design Pattern . 159

6.1.1 Contract Self-Destruction . 160
6.1.2 Factory Contract . 160
6.1.3 Name Registry . 161
6.1.4 Mapping Iterator . 162
6.1.5 Withdrawal Pattern . 163

6.2 Save Gas Costs . 164
6.2.1 Mind the Data Types . 165
6.2.2 Store Values in Byte-Encoded Form 165
6.2.3 Compressing Variables with the SOLC Compiler 166
6.2.4 Compressing Variables Using Assembly Code 166
6.2.5 Concatenating Function Parameters 167
6.2.6 Using Merkle Proofs to Reduce Storage Load 168
6.2.7 Stateless Contracts . 170
6.2.8 Storing Data on IPFS . 170
6.2.9 Bit-Compaction . 171
6.2.10 Batching . 172
6.2.11 Reading and Writing Separation on Storage Struct 173
6.2.12 uint256 and Direct Memory Storage 174
6.2.13 Assembly Optimization . 174

6.3 Assembly . 174
6.3.1 Stack . 175
6.3.2 Calldata . 175
6.3.3 Memory . 177
6.3.4 Storage . 178

6.4 Deconstruct Smart Contract . 180
6.4.1 Contract Creation . 183
6.4.2 General Part of Contract Body 188
6.4.3 Contract Bodies . 193

7 Upgradable Contract . 197
7.1 Solution . 197

7.1.1 Proxy Contracts . 197
7.1.2 Separate Logic and Data Contracts 198
7.1.3 Separate Logic and Data Through Key-Value 198
7.1.4 Partially Upgradeable Strategies 198
7.1.5 Comparison . 199
7.1.6 Simple Proxy Contract . 199

7.2 Generic Proxy to Ethereum Call . 202
7.3 Storage . 206

7.3.1 Inherited Storage . 206
7.3.2 Eternal Storage . 206
7.3.3 Unstructured Storage . 207

7.4 Augur . 208

xiv Contents

7.4.1 Contract Deployment . 208
7.4.2 Storage Deployment . 209

7.5 Colony . 211
7.5.1 Contract Deployment . 211
7.5.2 Storage . 212

7.6 Summary . 212

8 Develop Secure Contract . 215
8.1 History . 216
8.2 Attacking Vector . 216

8.2.1 Solidity Related . 216
8.2.2 Platform Related Attack . 227
8.2.3 Reentrancy (THE DAO Hack) 238
8.2.4 Denial of Service (DOS) . 240

8.3 Ethereum Smart Contract: Best Practice 242
8.3.1 Fail Early and Fail Loud . 242
8.3.2 Use Pull Instead of Push . 243
8.3.3 Condition, Behavior, Interaction 244
8.3.4 Test Case . 245
8.3.5 Fault Tolerance and Bounty Program 245
8.3.6 Limit the Funds That Can Be Deposited 247
8.3.7 Simple and Modular Code . 248
8.3.8 Do Not Start Coding from Scratch 248

8.4 Code Audit . 248
8.5 Summary . 249

Part IV Application

9 Decentralized Application (DApp) . 253
9.1 Feature . 253
9.2 DApp Architecture . 256

9.2.1 Client Side . 257
9.2.2 Server Side . 258
9.2.3 Workflow . 260

9.3 Ethereum DApp . 264
9.3.1 Environment Setup . 265
9.3.2 Project . 265
9.3.3 Solidity Programming . 267
9.3.4 Deployment . 272

9.4 IPFS DApp . 273
9.4.1 Environment Setup . 274
9.4.2 Project . 274
9.4.3 Compile . 279

Contents xv

10 Debug . 281
10.1 Solidity Language . 281

10.1.1 Event . 281
10.1.2 Assert/Require . 288
10.1.3 Test Case . 290

10.2 Testrpc/Ganache . 293
10.3 Truffle Debug . 295

10.3.1 Debugging Interface . 295
10.3.2 Adding and Removing Breakpoints 297
10.3.3 How to Debug a Transaction . 298
10.3.4 Debug a Foodcart Contract . 299

10.4 Remix Debug . 308
10.5 Other Debug Tools . 311

10.5.1 JEB . 311
10.5.2 Porosity . 311
10.5.3 Binary Ninja . 314

Part V Prospect

11 WebAssembly(WASM) . 317
11.1 Blame for EVM . 318

11.1.1 Lack of Modern VM Feature . 319
11.1.2 Human Readability . 319
11.1.3 Expensive and Slow . 320
11.1.4 Dangerous . 322
11.1.5 No Support of Multi-Sig and Upgradable Contract 322

11.2 Web Assembly . 323
11.2.1 Features . 323
11.2.2 WebAssembly Runtime . 325

11.3 Golang + WASM . 326
11.3.1 Basic Usage . 326
11.3.2 Hello WASM Example . 329
11.3.3 Interaction Between Golang and Frontend JavaScript . . 332
11.3.4 Solidity to WASM . 334

xvi Contents

Part I
Preliminary

Chapter 1
Basic Concepts

Ethereum is a public, open-source platform based on blockchain technology. You
can view it as a world computer built on top of peer-to-peer (P2P) network. Trusted
and decentralized application can be run on top of Ethereum with no threat of
centralized management and single-point-of-failure (SPOF) problem. And as there
is only one such machine in the world, the computation resource (such as CPU,
memory, etc.) is limited and strained under the pressure of huge scale of user base
and DApps. So, it is understandable that using Ethereum world machine will cost
money in the form of crypto currency.

1.1 Ethereum

Here is official definition of Ethereum from Ethereum.org:

Ethereum is a decentralized platform that runs smart contracts: applications that run exactly
as programmed without any possibility of downtime, censorship, fraud or third-party
interference. These apps run on a custom built blockchain, an enormously powerful shared
global infrastructure that can move value around and represent the ownership of property.

Bitcoin is the first well-known application of blockchain technology. However, it
is still a currency. Comparatively, Ethereum is an open-source and distributed
platform on the foundation of blockchain technology and it brings full potential of
blockchain technology to our attention.

Generally speaking, Ethereum is a state machine based on transaction. The state
transformation formula is like below:

σ0 ¼ Υ σ, Tð Þ

Initial state is σ, transformed state is σ0, T means transaction, Υ is transformation
function. Let us have a look at the following example:

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_1&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_1#DOI

• Initial state is that account balance of Alice is 100 US$ and account balance of
Bob is 0.

• Assume that the transaction is that Alice pay 10 US$ to Bob.
• Transformation Function Υ is to transfer 10 US$ from Alice’s account to Bob’s

account
• Transformed state is σ0: Account balance of Alice is 90 US$ and Bob has 10 US$

(Fig. 1.1).

Ethereum holds all the features of a public blockchain: Public/private key
encryption, cryptography hash function, Merkle tree, and hard/soft fork, etc. Fol-
lowing are technologies and terminologies which we will use in the later chapter.

1.1.1 Asynchronized Cryptography

Async cryptography is the greatest invention of the history of cryptography. Syn-
chronized encryption needs to share key beforehand. However, async cryptography
does not need to do that. Like “asynchronized” suggests, encryption key and
decryption key are different and they are named public key and private key.
Normally, public key is open and available to public, while private key is usually
kept private by person. Since public key and private key are separated, it means that
public/private key can be used on unsafe channel. The downside is: the whole
process is slow because encryption/decryption takes time; and encryption is not as
robust as synchronized encryption.

The security of asynchronized encryption usually is supported by mathematics.
At the moment, there are several main approaches: Large number prime factoriza-
tion, discrete algorithm, and elliptic curve. Mainstream algorithms include RSA,
ElGamal, and elliptic curve cryto-systems (ECC). Generally, they are used in the
scenario like digital signature or key exchange, which is not fit for large-scale data
encryption/decryption. As of now, RSA algorithm is considered unsafe to some
extent. So, ECC is recommended.

Fig. 1.1 Ethereum state machine

4 1 Basic Concepts

1.1.1.1 Diffie–Hellman Algorithm

Here, we are going to introduce a key exchange algorithm—Diffie–Hellman. First,
we will introduce mod operator. It is not difficult. Assuming that we have a
modulo A, for any number of B, B mod A is the remainder of B/A

For example: we use modulo A which equals to 11

15 mod 11 = 4
(3 + 8) mod 11 = 0
(3^4) mod 11 = 4

Now we can start to build key exchange algorithm. Let us think about the scenario
which has three persons: A, B, C

1. A and B select their own private number
For the sake of convenience, we assume that A and B both select a small

number: A selects 8, and B selects 9. And in the real world, you should select a
big number for security.

2. A and B select two public numbers
Both A and B share two numbers: one is modulo and the other is radix. In this

example, A and B share 11 (modulo) and 2 (radix).
3. A and B build their own public-private number(PPN)

Now, A and B will use two shared numbers in Step 2 with their own private
number to calculate their public-private number (called PPN):

PPN = radix ^ private number mod modulo

then:

A’s PPN = 2^8 mod 11 = 3
B’s PPN = 2^9 mod 11 = 6

As can be seen, the calculation process is irreversible due to modulo operation.

4. A and B mingle the other party’s PPN with his own private number.
The method of mingle is very similar as above, just replace the radix

with PPN:

A share key = B’s PPN^8 mod 11 = 6^8 mod 11 = 4
B share key = A’s PPN^9 mod 11 = 3^9 mod 11 = 4

1.1 Ethereum 5

The reason why we get the same result is because the power operation satisfies the
commutative law.

(a^b)^c = (a^c)^b = a^(bc)

Now A and B get the final share key (which is 4 in the example above) through
mingle process! And A and B can use this share key to encrypt/decrypt. Eavesdrop-
per—C, since C cannot get A or B’s private number, even though they know A or
B’s PPN, C still cannot get the final share key through mingle process.

1.1.1.2 Private/Public Key

Alice holds public key and private key. She can utilize private key to generate a
digital signature. Since Alice’s public key is available to public, Bob use it to verify
that a digital signature is from Alice. When you create an Ethereum address or
Bitcoin address, the long hexadecimal string (for example: 0xef. . .59) is a public key
while private key may be stored somewhere else—could be on cloud server, or could
be on personal device such as mobile phone or personal computer. If you lose the
private key of your wallet, that means that you lose all the fund in that wallet
permanently. So, it is always a good habit to backup your public key and private
key (Figs. 1.2 and 1.3).

Private
Key

Public
Address

Key

Fig. 1.2 Private key, public key, address relationship

Fig. 1.3 Use priv/pub to encrypt and decrypt message

6 1 Basic Concepts

1.1.1.3 Encryption

The most important application of public/private key is encryption. The picture
above depicts the usage:

• Alice has a key ring which contains public key of Bob, Joy, Mike
• Using Bob’s public key, Alice encrypts the message sent to Bob
• Alice send encrypted text
• Bob receives encrypted text and uses his own private key to decrypt the text

1.1.1.4 Verifying Signature

Another important application of public/private key system is digital signature. And
basic flow is shown as the figure above (Fig. 1.4)

• Using her own private key, Alice encrypts the message (clear text)
• Bob holds Alice’s public key
• Once Bob receives encrypted message, using Alice’s public key, he can verify

whether the message is from Alice or not.

1.1.2 Cryptographic Hash Function

Cryptographical hash is a hash function: it takes message as input and returns a
fixed-size string. The result string is called hash value, message digest, digital
signature, digital fingerprint, digest or checksum.

Fig. 1.4 Verify signature https://www.cnblogs.com/moonfans/p/3939335.html

1.1 Ethereum 7

https://www.cnblogs.com/moonfans/p/3939335.html

Hash function must have three main attributes as below:

1. Easy to calculate
Using hash function to calculate the hash value for any input should be easy

and fast. The whole calculation process should not take too long. It is unaccept-
able if hash value calculation takes 1 day or longer.

2. Irreversible
If hash result is already known, it is very hard to get source text through

reverse calculation. For example: you have a movie ticket, but it is very difficult
to fake one.

3. Collision Resistant
Different message must have different hash value. The analog is: A and B both

pay 10US$ to buy movie tickets and seat number should not be the same.

1.1.3 Peer-to-Peer Network

Just like BitTorrent, all Ethereum nodes are peers on a distributed network. There is
no centralized server. In the future, there might be all kinds of quasi-centralized
service for user and developer’s convenience. P2P network mainly have three types
of topology: Distributed hash table (DHT) tree and network.P2P technology has
covered almost all network application areas, for example: distributed scientific
computation, file sharing, stream play, voice communication, and online gaming
platform. Some famous P2P algorithms are Kademlia, Chord, Gnutella, etc.

1.1.4 Blockchain

Blockchain can be viewed as a global ledger or a simple database which includes all
transactions. All information is public available on network and verifiable.
Blockchain is a distributed ledger technology, and is the foundation of Bitcoin and
Ethereum crypto currency. It provides methods to record and transmit information in
a transparent, safe and traceable way. The blockchain technology makes organiza-
tion transparent, democratic, distributed, highly efficient, safe, and reliable and it
provides a method to record and transmit data in a transparent, safe, and traceable
way. Blockchain technology might disrupt existing industries in next 5 to 10 years.

• Decentralized
Service or application is deployed to a network and no centralized server has

absolute control on data and code. And, one or several server crash will not
influence the application or service.

• Distributed
Each server or node in the network connects each other through P2P protocol.

• Database
Database has multiple copies on each node so that user can access at any time

in time.

8 1 Basic Concepts

• Ledger
Each node holds an accounting system based on the same public ledger,

recording all transaction information in the network. And the ledger is
untampered and append-only (Fig. 1.5).

1.1.5 Ethereum Virtual Machine (EVM)

On top of Ethereum Virtual Machine (EVM), user can develop myriad apps.
Compared to Bitcoin’s script language, EVM provide more powerful and Turing-
complete programming language. For every opcode executed on EVM, it will be run
on each node in Ethereum network. Turing-completeness mean that computer can
solve any mathematics formula under the assumption that algorithm is correct if we
have enough time and memory.

1.1.6 Node

Running a node means that user can access on chain data through the node. A full
node downloads the whole blockchain while a light node does not download the all
data and connect to a full node to download desired data from it. Full node can be a
computer running all necessary software which include full distributed ledger and
P2P routing software.

1.1.7 Miner

Miner runs a node mining for network which processes the blocks on blockchain.
Usually, miner maintains a full node running professional mining software. But not
all full nodes are mining nodes. If there is a code upgrade, mining node needs to
upgrade its mining software with up-to-date code. This can be done through a soft
fork—a backward compatibility implementation. Although it can be done through
hard fork, hard forked code is not compatible with old code. You can find miner list
of Ethereum at stats.ethdev.com.

Genesis Block Block Block Block

Fig. 1.5 Blockchain

1.1 Ethereum 9

1.1.8 Proof of Work (PoW)

Miners compete with each other to challenge a mathematics problem. The first miner
who solves the problem will get rewarded and will have the right to pack transactions
into newly generated block. Each node will sync with new block automatically and
because of the block reward, each miner will eager to win the right to generate next
new block. This leads to a consensus network-widely. Please note, Ethereum is
scheduled to migrate to Proof of Stake (PoS) consensus.

1.1.9 Decentralized App (DApp)

In Ethereum community, the applications which use smart contract are called
decentralized APP. Using DApp, you can add UI and some extra functions to your
smart contract, such as, IPFS. DApp can also be run on a centralized server if that
server can interact with Ethereum nodes. DApp can connect to Ethereum node to
submit transaction and retrieve interested data. Besides a typical user login system,
user has a wallet address and data are saved locally, which is different with current
web application.

1.1.10 Solidity

Solidity is an advance programming language based on smart contract. It has similar
syntax as JavaScript. It supports static types, integration, library, and composite
user-defined type. It can be compiled into EVM assembly and therefore can be
executed on all Ethereum nodes. There are other smart contract programming
languages: Serpent, Vyper, and LLL. Undoubtably, Solidity is the hottest, most
popular programming language for smart contract. EVM is a runtime sandbox. So all
smart contracts rested on Ethereum is segregated from surrounded environment. As a
result, smart contract on EVM cannot access network, file system, or other processes
on Ethereum.

Solidity is a static-type checking language. Its compiler could check:

• All functions should be defined
• Object could not be null
• Invalid operator

10 1 Basic Concepts

1.2 Smart Contract

As its name suggests, smart contract is automatic contract. In fact, smart contract is a
computer program which runs automatically when specific condition is satisfied.
Smart contact is a set of instructions which is developed by Solidity (could be other
programming language, but this book only use Solidity). Solidity programming
language is based on IFTTT (which is IF-THIS-THEN-THAT logic: execute code
if some condition is met). Since smart contract is run on EVM, it cannot access
network, file system, or other processes running on EVM. Smart contract can access
external data through Oracle if necessary.

Generally, smart contract can be implemented based on two types of system:

1. Virtual Machine (VM): Ethereum
2. Docker: Fabric

All the following content including discussions, code, and diagrams are based on
smart contract framework on Ethereum.

1.3 GAS

GAS is used to measure how many steps a transaction will need on EVM. It is
straightforward: your transaction is complex, which means it needs more computa-
tion resources (such as CPU time and memory), you will need to pay more GAS. All
opcodes on EVM will cost GAS and it is unlikely to change in the future. The
smallest metric of GAS is wei, and 1 eth ¼ 10^18 wei ¼ 10^9 gwei.

1. Gas Price: Gas Unit Price
2. Gas Limit: Upper bound of Gas which user is willing to pay

Gas Limit � Gas Price ¼ the maximum fee that user is willing to pay
In one transaction, if the maximum fee you specified is not used up, then the fund

left will be returned to your account. Once Gas is exhausted, the transaction will stop
at wherever it is and an out-of-gas exception will be thrown. All state changes made
by the transaction will be reverted.

But, once the fund is used, even though the transaction fails, user will not get
refunded since the fund is rewarded to miners. User needs to pay fee for using
computation resource and fee consisted of three components:

1. Computation fee
2. Transaction (contract creation or message call) fee
3. Storage (memory, account/contract data storage) fee

If your contract save data to database, all the nodes in Ethereum will do the same,
which is very costly. That is why Ethereum will charge for storage and it encourages
less storage usage. If the op is to clear a storage item, Ethereum will do this for free,
or even get refunded.

Here is a chart about average GAS price—https://etherscan.io/chart/gasprice

1.3 GAS 11

https://etherscan.io/chart/gasprice

Image Credit: Etherscan

1.3.1 Why GAS?

Why we need GAS? Generally speaking, there are three main reasons: finance,
theory, and computation.

From finance point of view, the purpose is to incentivize miners to execute
transaction and smart contract by using their own time and resource. Many complex
operations need more computation resource; that is to say, they need to pay more
GAS. If a user wishes to have their transaction prioritized, he can submit transaction
with higher GAS price. In this way, transaction could be processed sooner by miner
incentivized by higher transaction fee. As compensation for computation resource
which miner invests in, GAS becomes more crucial after consensus migrates to
Proof of Stake (POS). In POS era, miner no longer get rewarded by mining blocks
and packing transactions, it is more important for miner to process transaction and
get paid for expending resources on the blockchain.

The theoretical purpose is to align the incentives of participants on the network.
Much of blockchain theory discusses how to mitigate harmful or malicious actors in
a trustless environment. GAS partially addresses this issue: Miners are incentivized
to work on the network and users are de-incentivized from acting poorly or writing
malicious code as they are putting their own ether (in the form of gas) at risk.

From computational point of view, the computational reason behind GAS goes
back to an old, foundational aspect of computing theory—the Halting Problem. The
Halting Problem is the issue of determining whether an arbitrary program will stop
running or if it will run forever just from looking at the description and the input
values. In 1936, Alan Turing determined that it is impossible for any machine to
solve the Halting Problem. In the EVM, this means a miner is never able to begin
processing a transaction and know 100% that the transaction will not go on forever.
With GAS—specifically, GAS limit—a finite amount of gas is always attached to a
transaction. Even if a miner began processing a transaction that was coded to
continue indefinitely—either from a bug or an attack on the network—the gas

12 1 Basic Concepts

would eventually run out, the transaction would end, and the miner would still be
compensated.

1.3.2 Components of GAS

GAS is divided into three components: GAS cost, GAS price, and GAS limit. In
Ethereum, calculation formula of transaction fee is very simple:

Transaction Fee(Tx Fee) = Actual GAS Cost * GAS Price

For example, if a transaction will need 50 GAS to complete, under the assumption
that GAS Price which is set by user is 2 Gwei, then the total transaction fee is 50 *
2 ¼ 100 Gwei.

1.3.2.1 GAS Cost

GAS Cost indicates that each opcode needs how much GAS, which is pre-defined in
Ethereum yellow paper. For example, a “addition” opcode need three GAS, regard-
less of the fluctuation of ether price. The GAS for each opcode will not be changed.
That is why GAS is used to estimate the cost of a transaction instead of ether. If ether
is used for GAS cost, the price might vary sharply.

1.3.2.2 GAS Price

GAS Price indicates that a unit of GAS equals to how much ether. Commonly, Gwei
is used as calculation unit. One Gwei equals to 1 billion Wei, and Gwei is 10 ^ �9
ether to be exact. That is to say, 1 Gwei ¼ 0.000000001 ETH. 1 Wei is the smallest
metric unit for ether and is indivisible. If you set GAS price to 20 Gwei, that means
you will pay 0.00000002 ether for each step. Apparently, the higher the GAS Price,
the more you will pay. There are several web sites like ethgasstation.info which
provide the average price of GAS. Sometimes, user may be willing to pay higher
price to make their transaction gain priority in getting picked and executed by
miners. This is because: GAS specified in transaction will be sent to miner and
miner will sort all transaction in their local pool by GAS price. The transaction with
higher GAS price will have more chance than those with lower GAS price.

1.3 GAS 13

1.3.2.3 Gas Limit

GAS Limit is the upper limit of the GAS usage for a specific transaction. That is the
maximum steps required to execute your transaction. GAS limit will be more than
what is actually used. Since transaction complexity varies, the GAS actually used is
only known after the transaction has been completed. So before you submit the
transaction, you need to set an upper limit of GAS usage. If the GAS limit is set too
low, a miner will try to complete the transaction until GAS is exhausted. Miner will
get rewarded when GAS is exhausted since miner have spent time and power for
users’ transaction. And on blockchain, the transaction will be set to false. The GAS
mechanism is set to protect user and miner: they will not lose fund or power due to
the buggy code and malicious attack.

1.4 Ether (ETH)

Ether is the token issued on Ethereum. ETH is the short symbol of ether. And ETH is
tradeable crypto currency. In Ethereum, Ether is mainly used to pay transaction fee.
Transaction fee equals to GAS cost multiplied by GAS price, and is paid in ETH.
User can set GAS price, but bear in mind that if GAS price is too low, it is possible
that no miner is willing to pack the transaction.

1.5 Account

Each account has its own address. In the address space, there are two types of
account: one is external owned account (EOA) controlled by public/private key.
Normally, only people can hold such account which is used to save ETH; the other
one is contract account controlled by code. These two types have some difference,
but the most important is that only EOA can initiate transactions.

Both types of accounts can send and receive ethers. Therefore, both have a
balance field to keep track of them. Contract accounts, however, can also store
data. Therefore, they have a storage field, and a code field that contains machine
instructions on how to manipulate the stored data. In other words, contract accounts
are smart contracts that live on the blockchain.

contract account ¼ balance + code + storage
external account ¼ balance + empty + empty

14 1 Basic Concepts

1.6 Transaction

A transaction is a message sent from an account to another account. We could
transfer ETH between accounts through sending transaction to an EOA. If the target
account is a contract account, sending transaction will trigger its code execution.
Since each transaction will be executed on all nodes in Ethereum, code execution or
transaction will be recorded by blockchain.

In this chapter, we introduce all the concepts and terms needed as the foundation
for understanding Solidity programming language thereafter. We will start to explore
Solidity details in following chapters.

1.6 Transaction 15

Chapter 2
Preparation

2.1 A Simple Example

Let us have a look at simple smart contract example as below and see how a Solidity
contract looks like:

pragma solidity 0.4.20;

contract BasicToken {
uint256 totalSupply_;
mapping(address => uint256) balances;
constructor(uint256 _initialSupply) public {

totalSupply_ = _initialSupply;
balances[msg.sender] = _initialSupply;

}
function totalSupply() public view returns (uint256) {

return totalSupply_;
}
function balanceOf(address _owner) public view returns

(uint256) {
return balances[_owner];

}
function transfer(address _to, uint256 _value) public

returns (bool)
{

require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender] - _value;
balances[_to] = balances[_to] + _value;
return true;

}
}

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_2&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_2#DOI

This is a typical token contract. Let us not to dive deep into details at the moment
and just pay attention to the program structure itself. If you have some
object-oriented programming language background, you can find that there is no
big difference between Solidity and traditional programming languages such as C++
and Java:

1. There is a pragma keyword, which is a compiler directive that specifies the
compiler version to be used for current Solidity file.

2. There is a class and its name is BasicToken; and the “Contract” can be seen as
class in C++ language

3. There is a variable declaration: uint256, mapping
4. There is a constructor
5. There is a function
6. There is a parameter and return value
7. There is a “if..else..” statement, which is almost the same as Java or C++

2.2 Tool Preparation

Before we start Ethereum Solidity programming, we need to prepare dev env and
tools. Let us install some necessary software and get acquaint with them:

• Programming Language
Ethereum has multiple versions implemented by different programming lan-

guages: such as C++, Python, and Go. While developers have their own prefer-
ence, in this book, we mainly use Go, Nodejs and Solidity. We also use
pyethereum, in order to interactively examine some function of Ethereum.

• Development Tools
In developing Ethereum application, we may use some debug tools, wallet,

and all kinds of plug-ins.
• Block Explorer

Since data on blockchain is transparent, user can validate their transaction
through blockchain explorer. Knowing how to check transaction on chain is a
must-have skill.

2.2.1 Development Environment

2.2.1.1 Node Setup

There are multiple ways to install Nodejs: you can either download a package, or
download a source code and compile. The easier way is as below:

18 2 Preparation

Sudo apt-get install curl
curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -

You can use following command to install Node.js 10.x and npm.

sudo apt-get install -y Nodejs
sudo apt-get install npm

You may also need to install some dev tools for local add-ons:

sudo apt-get install gcc g++ make

Install Yarn package.

curl -sL https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key
add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /
etc/apt/sources.list.d/yarn.list
sudo apt-get update && sudo apt-get install yarn

Confirm the env has been installed properly.

node -v
npm -v

As shown in the screenshot below, we have installed Nodejs version 10.6.0 and
npm package with manager version 6.1.0 (Fig. 2.1).

2.2.1.2 Web3 Installation

Web3 library is the most broadly used Ethereum dev package. We can use npm to
install. ^0.20.0 means to install web3 package version 0.20.0.

Fig. 2.1 Nodejs and Npm

2.2 Tool Preparation 19

npm install web3@^0.20.0

2.2.1.3 Ganache

Ganache is a local Ethereum node for testing purpose. Ganache was called testprc
before. We can use the command below to install and start testrpc:

npm install -g ethereumjs-testrpc
testrpc

Or we can install Ganache directly. From this point on, we will use Ganache as
the development and debug tool in this book.

sudo npm install -g ganache-cli

Let us have a test-run of Ganache:
Figure 2.2 shows that Ganache creates ten accounts with their associated private

keys after launch.

2.2.1.4 Truffle Installation (Fig. 2.3)

Truffle is an outstanding dev environment, testing framework, and Ethereum
resource management channel. It makes development on Ethereum much easier.
Truffle has following functions:

• Built-in smart contract compiler, linker, deployment, and binary file management.
• Automatic contract testing under the model of agile development.
• Scriptable and extensible deployment and publish framework.
• Network management which can be used to deploy on different network env.
• Package management based on Eth PM&NPM conformed to ERC190 standard.
• Console interacted directly with smart contract.
• Configurable construction workflow and supporting close integration.
• Executing external script in Truffle env.

Truffle project can be found at https://github.com/trufflesuite/truffle. To install
Truffle on Ubuntu, please input the following command:

sudo npm install –g truffle

20 2 Preparation

https://github.com/trufflesuite/truffle

Fig. 2.2 Ganache startup screen

Fig. 2.3 Truffle logo (https://www.trufflesuite.com/)

2.2 Tool Preparation 21

https://www.trufflesuite.com/

Let us check the status of truffle and its version info.

truffle v

The output is as below (Fig. 2.4).
In order to create a new project by using truffle. First, we create a directory named

test, and then type the following command:

truffle init

We check whether the project directory is created or not (Fig. 2.5):
The project’s directory is:

truffle-experiment/
├── contracts/

└──Migrations.sol
├── migrations/

└── 1_initial_migration.js
├── test/
├── truffle.js
└── truffle-config.js

Fig. 2.4 Truffle version

Fig. 2.5 Truffle project overview

22 2 Preparation

Smart contract source file is put under contracts directory. JavaScript files used to
deploy smart contract are put under Migrations directory. You may also have seen a
Migrations contract in the first folder, this is where the history of our migrations is
going to be stored on-chain. Test directory is used to save all test files. There are
truffle.js and truffle-config.js files under project root directory. These two files
contain some parameters required to deploy smart contract. Please check Truffle’s
official documents for details. Here is a brief summary:

• contracts/: Solidity file directory
• migrations/: deployable script file directory
• test/: testing files reside in this directory
• truffle.js: Truffle configuration file

Truffle uses Mocha as testing framework and Chai for Assertion. Official docu-
ment can be accessed through: https://mochajs.org/

const MyToken = artifacts.require('MyToken')
contract('MyToken', accounts => {

it('has a total supply and a creator', async function () {
const owner = accounts[0]
const myToken = await MyToken.new({ from: owner })
const creator = await myToken.creator()
const totalSupply = await myToken.totalSupply()
assert(creator === owner)
assert(totalSupply.eq(10000))

})
})

Here are some Truffle commands:

truffle migrate
truffle compile
truffle test

Truffle let developer start workflow of writing code—compiling—deployment—
testing—packing DApp quickly.

2.2.2 Development Tools

2.2.2.1 Introduction of Remix

We use two sample contracts to introduce Remix: Callee and Caller. Callee is the
contract being called and Caller is the calling contract.

2.2 Tool Preparation 23

https://mochajs.org/

pragma solidity ^0.4.24
contract Callee {

uint[] public values;
function getValue(uint initial) returns(uint) {

return initial + 150;
}
function storeValue(uint value) {
values.push(value);
}
function getValues() returns(uint) {

return values.length;
}

}

Source code for Caller contract:

pragma solidity ^0.4.24;
contract Caller {

function someAction(address addr) returns(uint) {
Callee c = Callee(addr);
return c.getValue(100);

}
function storeAction(address addr) returns(uint) {

Callee c = Callee(addr);
c.storeValue(100);
return c.getValues();

}
function someUnsafeAction(address addr) {

addr.call(bytes4(keccak256("storeValue(uint256)")), 100);
}

}
contract Callee {

function getValue(uint initialValue) returns(uint);
function storeValue(uint value);
function getValues() returns(uint);

}

Let us open a browser and navigate it to https://remix.ethereum.org/. We copy
and paste the above code to remix. And click “Deploy” on the “Run” tab to deploy
Callee contract (Fig. 2.6):

We can use “Copy address” button on the bottom-right to copy contract
address to clipboard. In our case, the address is
0x692a70d2e424a56d2c6c27aa97d1a86395877b3a.

Then, we go to create Caller contract: copy Caller source code to remix and click
“Deploy” button to deploy Caller contract (Fig. 2.7).

On the right panel, we pass the address of Callee contract as the parameter to
someAction method (Fig. 2.8):

From the output pane, we see that the function returns the value 250 as we expect
(Fig. 2.9).

24 2 Preparation

https://remix.ethereum.org/

Fig. 2.6 Deploy Callee
contract

Fig. 2.7 Deploy Caller
contract

2.2 Tool Preparation 25

Fig. 2.8 Pass Callee’s address to someAction()

Fig. 2.9 Console output of someAction()

26 2 Preparation

In the same way, we can play with someUnsafeAction and storeAction function
(Fig. 2.10):

storeAction function will return the current value held in Callee contract (in this
example, it returns 1) (Fig. 2.11).

Please select appropriate compiler version to run the example, otherwise there
will be some compilation errors. Here is just a simple introduction to remix. You can
go to Sect. 10.4 for more details (Fig. 2.12).

Fig. 2.10 Test someUnsafeaction and storeAction()

2.2 Tool Preparation 27

2.2.2.2 Introduction of Infura

Ganache can only be used to test locally. If we want to deploy or test smart contract
in production env or other public testing envs, we must connect to a full node. There
are two options to do so:

1. Running a full node on local
This solution requires that developers need to configure, compile, and launch

an Ethereum full node, where developers need to sync all the blocks. It is
apparently complicated. To date, Ethereum block sync is much more difficult
than before: First, the block data size is huge, which is close to TB level; Second,
in order to full sync, it is better to use SSD due to the constraints of bandwidth and
hard disc. Therefore, this solution will require a lot of work.

2. Public hosted Ethereum node
Smart contract developer can also choose some public hosted nodes which are

Ethereum full node themselves. Developer can connect to those nodes directly
through programming interface with no need to setup up their own Ethereum
node or wallet, e.g., Infura (http://infura.io) is a popular public hosted node. The
drawback of the public hosted node is that developer must trust it, where there
might be some security concerns. For development and testing, however, it is fast
and efficient.

In order to use Infura in truffle framework, we need to install the following
package:

npm install truffle-hdwallet-provider

2.2.2.3 Introduction of Metamask

MetaMask is a browser plug-in, and it plays a role of both Ethereum explorer and
wallet. Through Metamask, you can interact with DApps and smart contract without

Fig. 2.11 Console output of someUnsafeaction and storeAction()

28 2 Preparation

http://infura.io

F
ig
.2

.1
2

P
ay

at
te
nt
io
n
to

C
om

pi
le
r
ve
rs
io
n

2.2 Tool Preparation 29

downloading software or blockchain. Instead, you only need to install plug-in and
create wallet before you can start to transact, send, and receive ether. The biggest
concern of Metamask is just like other online wallet: you must trust Metamask since
all your information is stored on it, while it is possible that sensitive information is
hacked or leaked.

2.2.2.3.1 Install Metamask

Official address of Metamask plug-in is https://metamask.io/. Metamask supports
most of mainstream browsers, such as Firefox and Chrome (Fig. 2.13).

Click “Add to CHROME” to start installation. If succeed, it will show the
following dialog (Fig. 2.14):

And then, Metamask will ask you to create new password (Fig. 2.15):

Fig. 2.13 Metamask add-on on Firefox

Fig. 2.14 Metamask added to Firefox

30 2 Preparation

https://metamask.io/

2.2.2.3.2 MetaMask

MetaMask will create 12 mnemonic phrases for each user. Please keep these
mnemonic phrases in a safe place. You may need these words when you import
the account into other wallets (Fig. 2.16).

Click the red key to copy it to clipboard. User must save it to a safe place and do
not tell anyone else. Let us enter wallet page, as below (Fig. 2.17):

MetaMask already creates a wallet address for user automatically. If you cannot
see the full address, clicking the “three dots” on the top-right and it will open a pop
down menu related to wallet address as below (Fig. 2.18):

As shown above, there are two items in the pop down menu: the first item is the
wallet QR-code. In “Account Details,” you can export private key. The second item
is to check all the transfer information related to the wallet on Etherscan (Fig. 2.19).

Here, you need to input the password which is set when wallet is created. Then,
click “confirm.”

Clicking the “Main Ethereum Network” on the top is to select the network which
the wallet connects to (Fig. 2.20).

MetaMask prompts user that its default connection is to test net. But from the
screenshot above, it now switched to mainnet. Clicking the setting icon on the
top-right will show configuration menu as below (Fig. 2.21):

Fig. 2.15 Metamask added
to Chrome browser

2.2 Tool Preparation 31

In the pop down menu, there are three main functions: create account, import
account, and connect hardware wallet. The last menu item is “Setting,” in which we
can set up metrics of the crypto currency in wallet (Fig. 2.22).

Selecting the dropdown menu can select metrics including Fiat and crypto
currency. User can choose their favorite currency for display.

2.2.2.3.3 Function of Metamask

The main function of Metamask is to deposit and transfer crypto currency
(Fig. 2.23).

2.2.2.4 Introduction of Mist

Mist is an application based on electron, which means it is a desktop application with
web interface. Mist includes a Geth node on the background. At the time Mist is

Fig. 2.16 Metamask
mnemonic phrase

32 2 Preparation

started up, its connection to Ethereum blockchain is setup as well. Its project address
is https://github.com/ethereum/mist. In Ubuntu, we can use the following command
to install:

sudo dpkg -i ./Downloads/Ethereum-Wallet-linux64-0-11-1.deb

Download address is at: https://github.com/ethereum/mist/releases
We can start Mist with no parameter and it will start up an internal node. On

the other side, if we already have a local Geth node, we can start Mist up with

Fig. 2.17 Metamask
account balance

2.2 Tool Preparation 33

https://github.com/ethereum/mist
https://github.com/ethereum/mist/releases

inter-process communication (IPC) path. In this situation, Mist connects to our local
Geth node.

mist --rpc <test-chain-directory>/geth.ipc

Once Mist is started, please confirm that Mist is connected to a Geth node
(Figs. 2.24 and 2.25).

As Mist integrates browser, wallet, testing node, and remix functions, through
Mist, we can send transactions and check account balance, etc.

Fig. 2.18 Metamask
dropdown menu

34 2 Preparation

2.2.2.5 Other Tools

In order to explain the mechanism of Solidity smart contract programming, we may
need to install solc—a command-line Solidity compiler. If Nodejs is already
installed, we can use following commands to install solc. You may need to install
node-gyp beforehand.

npm install -g solc
npm install -g solc-cli

If your operating system (OS) is Ubuntu,

Fig. 2.19 Metamask show
private key

2.2 Tool Preparation 35

sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install solc

If your OS is Windows, you can go to https://github.com/ethereum/solidity/
releases to download installation package.

To gain deep insight of smart contract, we need to install pyethereum and its
related libraries to analyze the source code. Pyethereum is the Python implementa-
tion of Ethereum. We use Python 3.6 in this book.

Fig. 2.20 Metamask
connecting network

36 2 Preparation

https://github.com/ethereum/solidity/releases
https://github.com/ethereum/solidity/releases

sudo apt-get install libssl-dev build-essential automake
pkg-config libtool
libffi-dev libgmp-dev libyaml-cpp-dev
git clone https://github.com/ethereum/pyethereum/
cd pyethereum
python setup.py install

To explain crypto functions and address calculation formula used in Ethereum,
we need to install SHA3 library.

Fig. 2.21 Metamask
configuration menu

2.2 Tool Preparation 37

pip3 install pysha3

2.2.3 Blockchain Explorer

All the data on chain are public and transparent. That is to say, all blockchain data
such as transaction and contract can be retrieved and verified through programming
or block explorer. There are several popular browsers. We are using etherscan
browser as an example here.

Fig. 2.22 Metamask
configuration detail

38 2 Preparation

Address of etherscan browser is at: https://etherscan.io

• Query through contract address:
https://etherscan.io/token/

0x6ebeaf8e8e946f0716e6533a6f2cefc83f60e8ab#readContract
• Query through address:

https://etherscan.io/address/0x73d5c5f6a8925c817c7e5518592fe0b0a7cdf0af
• Query through transaction ID:

https://etherscan.io/tx/
0x837bf52f3a7eaa115fee9dde783b617976c907d59e2bd79014339f54c2b8decd

Fig. 2.23 Metamask
sending ETH

2.2 Tool Preparation 39

https://etherscan.io
https://etherscan.io/token/0x6ebeaf8e8e946f0716e6533a6f2cefc83f60e8ab#readContract
https://etherscan.io/token/0x6ebeaf8e8e946f0716e6533a6f2cefc83f60e8ab#readContract
https://etherscan.io/address/0x73d5c5f6a8925c817c7e5518592fe0b0a7cdf0af
https://etherscan.io/tx/0x837bf52f3a7eaa115fee9dde783b617976c907d59e2bd79014339f54c2b8decd
https://etherscan.io/tx/0x837bf52f3a7eaa115fee9dde783b617976c907d59e2bd79014339f54c2b8decd

2.3 Testing Environment

Ethereum Explorer Faucet

Rinkeby Geth https://rinkeby.etherscan.io/ https://www.rinkeby.io/#faucet

Ropsten Geth https://ropsten.etherscan.io/ http://faucet.ropsten.be:3001/

Kovan Parity https://kovan.etherscan.io/ https://app.chronologic.network/faucet

Fig. 2.25 Mist account overview

Fig. 2.24 Mist startup screen

40 2 Preparation

https://rinkeby.etherscan.io/
https://www.rinkeby.io/#faucet
https://ropsten.etherscan.io/
http://faucet.ropsten.be:3001/
https://kovan.etherscan.io/
https://app.chronologic.network/faucet

Besides mainnet, Ehtereum community also provides test net for developers to
debug. Since running DApp costs certain amount of gas, debugging and testing in
test net can save developers money. The first test net of Ethereum is Morden which
started from July 2015 and completed on November 2016. Morden network was
discarded because of consensus problem. The second test net is Ropsten which is
started at the same time when Morden went offline. It ran until February 2017.
Because of the lack of computing power of the test network itself, malicious attacker
transmitted huge block data in the network, resulting in choking the whole network.
The testing network is again unavailable.

2.3.1 Metamask Switching Between Testing Environments

Metamask plug-in can switch between different environments (Fig. 2.26).

2.3.2 Obtain Testing Coins

Since Solidity programming practice costs gas, for testing purpose, you will need to
get some testing tokens for free. In addition, each testing net has its own blockchain
explorer. We are picking Rinkeby as an example and introducing how to get free
testing tokens. Anyone having a Twitter, Google+, or Facebook accounts may
request funds within the permitted limits.

1. We need to publish a post on public web site (For example: Facebook, Twitter,
Weibo, etc.) The post must contain your wallet address. For example, author
(Gavin@gondola731) tweeted a tweet as following (Fig. 2.27):

2. Copy the URL of the post.
3. Go to https://www.rinkeby.io/#faucet, paste the URL of your post, select how

much ETH you want, and click “Give me ether” button. You should receive your
testing ETH shortly (Fig. 2.28).

2.3.3 Connect to Testing Environment

We use truffle to showcase how to connect to Rinkeby network. In order to connect
Rinkeby, we need to modify truffle-config.js file:

2.3 Testing Environment 41

https://www.rinkeby.io/#faucet

Fig. 2.26 Metamask Rinkeby network

42 2 Preparation

module.exports = {
networks: {

development: {
host: "localhost",
port: 8545,
network_id: "*" // Match any network id

},
rinkeby: {

host: "localhost",
port: 8545,
network_id: "4", // Rinkeby ID 4
from: "0xf6e9dc98fe5d2951744967133b3c31765be657c1" //

Deploy Account
}
}

};

Fig. 2.28 Rinkeby faucet

Fig. 2.27 Publish a message on Twitter

2.3 Testing Environment 43

2.4 Ethereum Source Code Compilation

In this section, we show how to compile Ethereum Source code on Ubuntu. You can
refer to https://github.com/ethereum/go-ethereum/wiki/Installing-Go#ubuntu-1404
for detailed instructions. It also contains information about how to compile on
other platforms (such as Windows and MacOS).

First, we need to download Go language package and unzip it locally. Ethereum
requires Go version above 1.8. Here we use Go version 1.9.4. For better speed, you
can also use other mirror sites instead of storage.googleapis.com.

wget https://storage.googleapis.com/golang/go1.9.4.linux-
amd64.tar.gz
sudo tar zxvf go1.9.4.linux-amd64.tar.gz

After the unzip, let us move Go package to /usr/local.

mkdir dev
sudo mv go /usr/local

And then, modify environment file and make Go package be accessible under
current user environment.

sudo vi .bashrc

We need to append the following settings to .bashrc environment file:

export GOROOT=/usr/local/go
export GOPATH=/opt/goworkspace
export PATH=$PATH:$GOROOT/bin:$GOPATH/bin

To make effective of this modification, we use “source” command and check go
version.

source .bashrc
go version

Next, we need to install some dependencies.

sudo apt install -y build-essential

44 2 Preparation

https://github.com/ethereum/go-ethereum/wiki/Installing-Go#ubuntu-1404
http://storage.googleapis.com

And, we need to create source directory (Git needs to be installed).

mkdir geth
cd geth

Git clones the source code.

git init
git remote add origin https://github.com/ethereum/go-ethereum.
git
git pull origin master

The final step is to compile geth.

make geth

If there is no exception, you can now start to run geth.
Congratulations to all readers who get here, after you setup all necessary tools,

dev and testing environment, you are fully prepared for Solidity programming.

2.4 Ethereum Source Code Compilation 45

Part II
Solidity Basics

Chapter 3
Solidity Basics

3.1 Sol File Structure

3.1.1 Pragma

pragma solidity ^0.4.0;

Pragma indicates that compiler version above 0.4.0 should be used to compile the
Solidity source code. ^ means that compilation does not work if compiler version is
earlier than 0.4.0. We can also specify the compiler version range as below:

pragma solidity >=0.4.22 <0.6.0;

3.1.2 Import

Global Import *

import “filename”;

Import from self-defined namespace *

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_3&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_3#DOI

import * as symbolName from “filename”

Import separately

import {symbol1 as alias, symbol2} from “filename”

3.1.3 Comment

3.1.3.1 Code Comment

Solidity has two types of comment: single line (//) and multiple line (/*. . .*/)

// Single line comment
/*
This is a Multi-line comment
*/

3.1.3.2 Document Comment

The main function of document comment is to generate documentation automati-
cally. Solidity uses /// or /** . . . */, which follow Doxygen1 syntax, to support
document generation, parameter annotation and verification popped out when the
function is called.

pragma solidity ^0.4.0;
/** @title Area Calculator*/
contract shapeCalculator{

/**
*@dev Calculate area and perimeter of rectangle
*@param w Width of rectangle
*@param h Height of rectangle

(continued)

1https://en.wikipedia.org/wiki/Doxygen.

50 3 Solidity Basics

https://en.wikipedia.org/wiki/Doxygen

*@return s Area of rectangle
*@return p Perimeter of rectangle
*/
// Calculate area and perimeter of rectangle
function rectangles(uint w, uint h) returns (uint s, uint p){

s = w * h;
p = 2 * (w + h) ;

}
}

3.1.4 Contract

pragma solidity ^0.4.11;
contract Contractexample {
uint256 obj;
function setObj(uint256 _para) {

obj = _para;
}
function getObj() returns(uint256) {

return obj;
}

}

For those who are familiar with object-oriented programming language, it is easy
to understand that contract can be thought as class. Contract also has constructor,
member function, and member variables.

3.1.5 Library

The main difference between Library and Contract is that library cannot use fallback
function, payable keyword, or define storage variable. However, library can modify
storage variable in the contract which invokes it. For example, if we call a function in
library from our contract and pass the storage variable defined in the contract to
library function as parameter, the variable can be modified in library function and the
change will be reflected in calling contract. You can think this as passing a C pointer
to a C function.

Besides, library does not have Event log, but event can be emitted by library.
Event triggered in library function is recorded in the Event log of calling contract.
Here is a simple example:

3.1 Sol File Structure 51

library EventEmitterLib {
function emit(string s) {

Emit(s);
}
event Emit(string s);

}
contract EventEmitterContract {

using EventEmitterLib for string;
function emit(string s) {

s.emit();
}
event Emit(string s);

}

When we use web3 library to develop DApp, we can receive event triggered by
library functions when listening on EventEmitterContract.Emit event, while it can-
not happen if we listen on EventEmitterLib’s emit event.

3.1.6 Interface

pragma solidity ^0.4.11;
interface XXX {
function cal(uint256 para) external view returns (uint256);

}

As Java, C++, Solidity interface just define prototype, instead of implementation.

3.2 Structure of Contract

A general contract has following parts:

1. State variables
2. Structure definitions
3. Modifier definitions
4. Event declarations
5. Enumeration definitions
6. Function definitions

We will explain them in more details.

52 3 Solidity Basics

3.3 Variable

Like traditional programming language, Solidity has basic data types, such as int,
uint, struct, array, and mapping. Variable type can be categorized into two catego-
ries, namely Static and Dynamic. For state variable, the most important property of it
is that the variable is stored into Ledger on blockchain by miners. Variables declared
in contract and not defined in functions are state variables. Memory allocated to state
variable is static and cannot be changed.

3.3.1 Value Type

3.3.1.1 Boolean

The value of bool is either true or false. Not like C programming language, 1 (number
one) does not equal to true. Boolean type cannot be implicitly casted to integer.
While, the explicit cast is allowable.

3.3.1.2 Integer

Signed integer and unsigned integer have different sizes, e.g., uint8, uint16, to
uint256 or int8, int16 to int256. Unit and int also have their own alias, namely
unit256 and int256

Integer literal consists of a sequence of numbers ranging from 0 to 9, which is
interpreted as decimal by default. As octal is not supported in Solidity, leading 0 is
ignored by default, such as 0300, which is considered as 300.

A decimal consists of .(dot) and must contain at least one number on its left or
right. For example, 1.1 and 1.3 are all valid decimal numbers.

3.3.1.3 Address

The length of Ethereum address is 20 bytes (160 bit). So address is the same as
uint160.

address addr= 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a;

For all the properties and methods related to address, please refer to Sect.
3.10.1.3.

3.3 Variable 53

3.3.1.4 Fixed Byte Arrays

ByteN indicates fixed-size byte array and the range of N is from 1 to 32, such as
bytes1, bytes2, bytes3 ... bytes32. Byte is the same as byte1. We can use hexadec-
imal literal or digital literal to set bytesi:

bytes1 aa = 0x75;
bytes1 bb = 10;
bytes1 ee = -100;
bytes2 cc = 256;

We also could use char to set bytesi:

bytes1 dd = 'a';

For bytes type, we can use bit operation: AND, OR, XOR, NOT, and Bit shift.

3.3.1.5 Rational and Integer Literals, String Literals

Literal itself is value. Solidity supports the following literal types:

• Integer Literal
For example, 1, 10, -1, and -100.

• String Literal
For example, “test.” String literals can use single quotation or double

quotation.
• Address Literal

For example, 0xfa35b7d915458ef540ade6078dfe2f44e8fa733c.
• Hexadecimal literal using 0x as prefix

For example, “0x9A5C2F.”
• Digital Literal

For example, 7.5 and 0.18.

3.3.1.6 Enum

Enum is a user-defined type, which can be converted to integer explicitly. However,
the implicit conversion is not allowed.

54 3 Solidity Basics

pragma solidity ^0.4.0;
contract test {

enum Direction {East, South, West, North}
Direction choice;

. . .
}

3.3.1.7 Function Types

Function type is the type of function.

• Could assign a function to a variable—a function type variable.
• Could pass a function as a function parameter
• Could return a function in a method call

The complete function definition is as following:

function XXX(<parameter types>) {internal(default)|external}
[constant][payable] [returns (<return types>)]

If the type is not specified, the default function type is internal. If the function
does not have a return value, returns keyword must be omitted.

3.3.1.7.1 Internal Function

Internal function can only be used in the contract where it is defined. For instance,
current code block, internal library function, or inherited function. It cannot be
executed outside of current contract context. The default function type is internal.

3.3.1.7.2 External Function

External function consists of two parts: address and function signature. It can be used
as parameter of external function call, or return by external function call.

3.3.2 Reference Type

Not like the value type described above, complex type occupies a larger space,
which is more than 256 bytes. And it uses more space while copying variables. From

3.3 Variable 55

the standpoint of saving space, solidity use reference to pass complex type. Here are
some common reference type:

1. Dynamic byte array(bytes)
2. String
3. Array
4. Struts

3.3.2.1 Variable-Length Byte Array (Bytes)

Variable-length byte array—bytes, is a dynamic array and it can be any size. But it is
different with byte []. byte [] array allocates 32 bytes for each element. In contrast,
bytes pack all bytes together. Bytes can be used to declare a specified-length state
variable as following code show:

bytes localBytes = new bytes(0) ;

Bytes variable can also be assigned as below:

localBytes = "Ritesh Modi";

Element can be pushed into byte array:

localBytes.push(byte(10));

Bytes variable also provide length property:

return localBytes.length; //reading the length property

3.3.2.2 String

In C programming language, string is ended with “\0”. Not like C, string in Solidity
does not contain terminator. Therefore, the actual space allocated to string “test” is
4 bytes.

56 3 Solidity Basics

3.3.2.3 Array

We can use the keyword “new” to create a memory type array. The major difference
between memory and storage array is: updating the length property cannot adjust the
array size through. Let us have a look at the following example:

pragma solidity ^0.4.0;

contract example {
function f() {

// Create a memory array
uint[] memory a = new uint[](7);
// We can not update the length property of memory array
// Erro info: Expression must be LValue
// a.length = 100;

}
//storage Array
uint[] b;
function g(){

b = new uint[](7);
// We can adjust array length through setting length property
b.length = 10;
b[9] = 100;

}
}

In the code above, f() function tries to adjust the length of memory array and
compiler gives error information: “Error: Expression has to be an lvalue.” However,
in g() function, for storage array, we can change the size of array through updating
length property.

bytes: Dynamic byte array. It is not a value type
string:Dynamic UTF-8 encoded string. It is not a value type.

3.3.2.4 Struts

Struct is used to define user’s own data structure, which is a composite data type. It
can include different types of member data. There is no code in struct and struct is
composed of variables only.

struct Funder {
address addr;
uint amount;

}

3.3 Variable 57

3.3.3 Mapping

Mapping is a kind of key/value pair. The syntax is like mapping (KeyType ¼>
_KeyValue). Key can be any type except mapping, such as array, contract, enum,
struct, etc. For example:

mapping(address => uint) public balances;

3.3.4 Special Case

In runtime, variable is allocated on stack. Due to the constraint of stack depth
(Maximum 16), if too many local variables are defined, stack overflow error will
occur. Here is the demo:

pragma solidity ^0.4.13;
contract overflowContract{

function testoverflow(address a1, address a2, address a3, address
a4, address a5, address a6){

address a7;
address a8;
address a9;
address a10;
address a11;
address a12;
address a13;
address a14;
address a15;
address a16;
address a17;

}
}

We will see following errors:

browser/overflow.sol:4:5: CompilerError: Stack too deep, try
removing local
variables.

function testoverflow(address a1, address a2, address a3,
address a4, address a5, address a6){

^
Spanning multiple lines.

58 3 Solidity Basics

The error is caused by stack depth exceeding 16. The official recommendation is
to use less variable in Solidity programming and make the function body as small as
possible. There are other alternatives: wrap variables into struct, or array, or use
keyword—memory (Fig. 3.1).

3.4 Operators

Here are the Solidity operators:

No. Variables Descriptions

1 Postfix Increment and Decrement ++, --

2 Function Call <func>(<args...>)

3 Array Address <array>[<index>]

4 Member Access <object>.<member>

5 Bracket (<statement>)

6 Prefix increment and decrement ++, --

7 Unitary add/substract +, -

8 Unitary delete delete

9 Logical Not !

10 Bitwise Not ~

(continued)

Fig. 3.1 Stack overflow

3.4 Operators 59

No. Variables Descriptions

11 Exponent **

12 Multiply, Divide, Modulo *, /, %

13 Add/Subtract +, -

14 Bit Shift <<, >>

15 Bit And &

16 Bit XOR ^

17 Bit OR |

18 Larger than, smaller than, larger than
or equal to, smaller than or equal to

<, >, <¼, >¼

19 Equal or not equal ¼¼, !¼
20 Logic AND &&

21 Logic OR ||

22 Ternary Operator <conditional> ? <if-true> :<if-false>

23 Assignment ¼, |¼, ^¼, &¼, <<¼, >>¼, +¼, -¼, *¼,
/¼, %¼

24 Comma ,

3.5 Statement

Solidity does not support switch and goto. The bracket in if condition statement is
not omittable. But in the single line statement, curly bracket can be omitted.

3.5.1 Conditional Statement

In Solidity, if/else is just like other programming languages. But if if/else code block
only contains just one statement, curly brace {} could be omitted. Attention: In
Solidity, if(1){...} is invalid. If you really want to use this statement, you must force
a type cast to convert 1 to Boolean value true.

if (totalPoints > bet.line)
balances[bet.over] += bet.amount * 2;

else if (totalPoints < bet.line)
balances[bet.under] += bet.amount * 2;

else { // refunds for ties
balances[bet.under] += bet.amount;
balances[bet.over] += bet.amount;

}

60 3 Solidity Basics

3.5.2 Loop

Example of While statement:

// While loops
uint insertIndex = stack.length;
while (insertIndex > 0 &&

bid.limit <= stack[insertIndex-1].limit) {
insertIndex--;

}

Example of for statement:

address[] public addressIndices;
// start adding address in array
addressIndices.push(newAddress);
...
// We know the length of the array
uint arrayLength = addressIndices.length;
for (uint i=0; i<arrayLength; i++) {

// do something
}

3.5.3 Miscellaneous

Break: Jump out of current loop
Continue: Exit current round of loop and jump to next round of loop
Return: Return from function/Method
?: Ternary operator example: a>b?a:b return a if a>b, or return b

3.6 Data Location

Each variable declaration in the contract has its own data location. EVM provides the
following four types of data locations:

1. Storage
Storage variable is a global variable accessible to all function. And it is

persistent, which means that storage variables will be saved to each full node in
the public chain network.

3.6 Data Location 61

2. Memory
The lifetime of local memory variable in the contract is ephemeral: memory

variable is destroyed when the function is finished.
3. Calldata

All function calls use calldata, which includes function parameters. Calldata is
read-only memory area

4. Stack
EVM maintains a stack to load variable and EVM opcodes. The stack is the

working environment of EVM. It has a depth of 1024. If it stores more than 1024
levels, an exception will be thrown.

Default function parameters including return values are all memory. Default local
variables are storage. And default state variables (public variables declared by
contract) are allocated in storage.

Parameters of external function (return parameter exclusive) are forced to
calldata.

Data location is very important since the assignment between variables in differ-
ent data location will have different effects. Assignment between a memory and a
storage variable or between storage variables will create an extra irrelevant
data copy.

Assigning a storage state variable to a storage local variable will be a reference
assignment. So modifying local variable will be visible to its related state variable.
Assigning a memory reference type to another memory reference type will not create
a data copy.

We should consider the data location seriously: memory (non-persistent) or
storage (persistent). Complex types, such as array and struct, have an extra attri-
bute—data location in Solidity. The attribute value can be memory or storage.

Memory data location is just the same as memory in the traditional programming
language. It is accessible after allocated and it becomes inaccessible if program steps
out of its scope. Comparatively, on the blockchain, since its infrastructure is based
on Turing-complete machine, there are so many states which need to be stored
permanently. For example, the participant information of crowdfunding. In this
situation, we need to use the storage type. Based on program context, in most
situations, Solidity default data location is storage and we can specify storage or
memory to modify default data location.

The third type of data location is called calldata. It stores function parameters and
it is read-only and non-persistent.

pragma solidity ^0.4.0;
contract DataLocation{
uint valueType;
mapping(uint => uint) public refrenceType;
function changeMemory(){

(continued)

62 3 Solidity Basics

var tmp = valueType;
tmp = 100;

}
function changeStorage(){

var tmp = refrenceType;
tmp[1] = 100;

}
function getAll() returns (uint, uint){

return (valueType, refrenceType[1]);
}

}

Summary
Forced data location

• Parameters of external function (not including return value) are forced to be
calldata

• State variables are forced to storage

Default data location

• Function parameters (including return value): memory
• All other local variables: storage

Different storage location cost different amount of gas

1. Storage variable will be saved permanently and therefore it is costly.
2. Memory variable only saves value temporarily and memory variable will be freed

after the function call. So it costs much less.
3. Stack keeps small local variables and it is free. But it has its own constraints: the

maximum count of variables is 16.
4. Calldata contains the message body and its calculation will add Gas cost of n*68

3.7 Modifier

Function declaration uses the following template. Besides function name and
parameters, we can add modifiers. In this section, we mainly introduce modi-
fiers—their usage and difference.

function XXX(<parameter types>) {internal(default)|external}
[constant]
[payable] [returns (<return types>)]

3.7 Modifier 63

3.7.1 Standard Modifier

Function like state variable has visibility modifier. Possible visibility modifiers are:

External, Internal (default), Public(default), Private

Function also has other modifiers which specify the accessibility/mutability of
state variable:

Constant, View, Pure, Payable

3.7.1.1 Internal Modifier

Functions and state variables defined with internal can only be accessed from
internal: current contract or contract inheriting from it. Please note: do not use this
keyword here since this keyword indicates that it is external access. If there is no
modifier, internal is the default modifier. Internal is similar to protected keyword in
Java or C++. The internal function is not accessible from external, and it is not a part
of the contract interface.

3.7.1.2 External Modifier

We can call external functions from an external contract or through transaction since
external functions are a part of the contract interface. For an external function f, it
cannot be called from internal (For example, f() is invalid, but this.f() is ok). External
functions are more effective in receiving a big size array.

3.7.1.3 Public Modifier

Public functions are a part of the contract interface. And it can be invoked through
internal or external message call. For public state variable, the compiler will create
getter and setter function automatically.

64 3 Solidity Basics

3.7.1.4 Private Modifier

Private functions and state variables are only visible to the current contract. They are
not accessible from the inherited contract. And private functions are not a part of the
contract interface.

3.7.1.5 Constant Modifier

Constant functions cannot modify state on chain. But they can read the value of state
variables and return it to caller. Constant function body is not able to change
variables, create another contract, trigger event, and invoke other functions which
may change the state on chain.

Constant is included in function’s JSON ABI file, and it is used by web3.js library
to determine a function call is initiated by a transaction or a direct call.

contract HelloVisibility {
function hello() constant returns (string) {

return "hello";
}
function helloLazy() constant returns (string) {

return hello();
}
function helloAgain() constant returns (string) {

return helloQuiet();
}
function helloQuiet() constant private returns (string) {

return "hello";
}

}

Hello functions can be called by any other contract including itself (check
helloLazy function). Other function in the contract can call helloQuiet function
directly and helloAgain function shows how to do it. But if helloQuiet is called
from an external contract, an error will be raised.

In the example above, all function is declared with constant since they will not
change the world state.

3.7.1.6 View Modifier

Function declared with View cannot modify state variable. It equals to constant
function.

3.7 Modifier 65

3.7.1.7 Pure Modifier

Pure specifies more constraints for functions. Pure cannot read/write state variable.
Function modified by pure cannot access current state and transaction variables.

3.7.1.8 Payable Modifier

Payable functions can accept ether from callers. If sender does not provide ether, call
may fail. Payable functions can only accept ether.

3.7.1.9 Difference Between Modifiers

3.7.1.9.1 External and Public

From the visibility point of view, external is almost the same as public. After public/
external functions in contract are deployed to blockchain, functions can be called by
other contracts: through direct call or transaction.

The main difference between external and public is how they are implemented
and how parameters are processed. In contract, a call to a public function is
implemented by JUMP opcode, just like private and internal functions, while
external functions are implemented through CALL opcode. Besides, the external
function does not copy parameters from calldata to memory or stack.

Following example shows how external and public functions behave differently:

pragma solidity ^0.4.12;
contract Test {

/*
Can be called by internal or external function
Since internal function read parameters from memory, Solidity

needs
to copy array data into memory and it costs extra gas
*/
function test(uint[20] a) public returns (uint) {

return a[10] * 2;
}
/*
Cannot be called from internal. And it read parameters directly

from
CALLDATA. And there is no need to copy parameter into memory
*/
function test(uint[20] a) external returns (uint) {

return a[10] * 2;

(continued)

66 3 Solidity Basics

}
/*
Code is invoked by JUMP opcode.
Array type parameter is passed through pointer to memory.
Function body access parameter through memory pointer
*/
function test(uint[20] a) internal returns (uint) {

return a[10] * 2;
}

}

If we call test and test2 function in this contract, it will cost 496 gas for public
function test(), while the external function just cost 261 GAS. (Please note: with the
upgrade of Solidity compiler and EVM, Gas amount expended may vary) The reason
is: in public function, Solidity copies array into memory while external function
reads parameters from calldata. Memory allocation is expensive. So reading from
calldata is comparatively cheap.

Why Solidity copy all parameters of public function to memory? The main reason
is: it is possible to call a public function from an internal function. Comparatively,
external call to a public function happens in a totally different context. The internal
call is implemented by Jump opcode and array parameter is passed in the form of a
memory pointer. So, when Solidity compiler generates opcode for internal function,
function accesses parameter through memory pointer. Solidity compiler does not
allow calling an internal function in an external function, so it allows to read
parameters directly from calldata and skip the step of copying parameters to
memory.

Now, let us summarize:

• The internal call is always the cheapest since it is implemented through JUMP
opcode and parameter is passed through memory pointer.

• Since the public function does not know the caller is external or internal, the
public function always copies parameters to memory like what internal function
does. And this operation is pretty expensive.

• If you are absolutely sure that the function will be called by an external contract
only, please use the external modifier.

• In most situations, this.f() is meaningless since it will use an expensive CALL
opcode.

3.7.1.9.2 Internal vs External

Following example demos the method to call internal and external function. Inline
comments clearly explain the difference:

3.7 Modifier 67

pragma solidity ^0.4.5;
contract FuntionTest{

function internalFunc() internal{}
function externalFunc() external{}
function callFunc(){

// Call internal function directly
internalFunc();

// Cannot call an external func from an internal func.
// Compilation error: not declared identifier
//externalFunc();

// Cannot call an `internal` function in an `external` way
// Error: Cannot find function "internalFunc" or not visible
//this.internalFunc();

// Using `this` to call an external function in an `external` way
this.externalFunc();

}
}
contract FunctionTest1{

function externalCall(FuntionTest ft){
// Call external function in another contract
ft.externalFunc();

// Cannot call internal function of another contract
// Error:Cannot find member function "internalFunc" or
// invisible in FuntionTest
//ft.internalFunc();

}
}

3.7.2 Self-defined Modifier

A modifier can be used to change function behavior. For example: modifier could be
used to check the condition before the execution of a function. A modifier can be
inherited and can be overridden by derived contract.

pragma solidity >0.4.24;
contract owned {

constructor() public { owner = msg.sender; }
address payable owner;

(continued)

68 3 Solidity Basics

// We define a modifier and use it in derived contract.
// And the body of function will be add after the special
// character `_` in modifier
// This means that function body will be run here if contract owner
// call this function, or raise exception
modifier onlyOwner {

require(
msg.sender == owner,
"Only owner can call this function."

);
_;

}
}
contract mortal is owned {

// This contract inherits `onlyOwner` modifier from owned
contract

// Its function is to allow only owner to call `close`
function close() public onlyOwner {

selfdestruct(owner);
}

}
contract priced {

// Modifier can accept parameter as input
modifier costs(uint price) {

if (msg.value >= price) {
_; // _ indicate function body

}
}

}
contract Register is priced, owned {

mapping (address => bool) registeredAddresses;
uint price;
constructor(uint initialPrice) public { price = initialPrice; }
// Please note: `payable` is indispensable, or function will
// reject all ether sent to it
function register() public payable costs(price) {

registeredAddresses[msg.sender] = true;
}
function changePrice(uint _price) public onlyOwner {

price = _price;
}

}
// Mutex contract below set a mutex lock on contract
// Mutex contract protect itself by using modifier to avoid
re-entrancy
// attack
contract Mutex {

bool locked;
modifier noReentrancy() {

require(

(continued)

3.7 Modifier 69

!locked,
"Reentrant call."

);
locked = true;
_; // modified function boday
locked = false;

}
/// This function is protected by Mutex lock. This means that
/// `msg.sender.call` cannot call f. This prevent re-entrancy

attack
/// `return 7` statement return 7 and then execute `locked =

false`
/// in modifier
function f() public noReentrancy returns (uint) {

(bool success,) = msg.sender.call("");
require(success);
return 7;

}
}

3.8 Event

Event is a convenient interface provided by EVM infrastructure, which is used to
capture the event.

pragma solidity ^0.4.0;
contract SimpleAuction {

event aNewHigherBid(address bidder, uint amount);
function bid(uint bidValue) external {

aNewHigherBid(msg.sender, msg.value);
}

}

Maximum three parameters can be defined as indexed. Once the parameter is set
to be indexed, it means that the parameter can be used to query log, even can be
filtered. If array (including string and bytes) is defined with indexed, then its Keccak-
256 hash value will be used as topic. Except for anonymous event, all event
signatures (For example: Deposit (address, hash256, uint256)) is one topic. This
also means that an anonymous event cannot be filtered by name. Through function
log0, log1, log2, log3, log4, developers can access low-level log component. Logi
indicates that it has i + 1 parameters (i is the number of parameters and is counted
from 0). The first parameter is used as the data of log events, and the others are used
as topics.

70 3 Solidity Basics

Event and log have three main usages:

• Smart contract can use event to return value to the user interface
• Async triggers with data
• A cheaper storage

3.8.1 Return Value to UI

A simple use case of an event is to return value to App frontend. See following
example:

contract ExampleContract {
//some state variables ...
function foo(int256 _value) returns (int256) {

// manipulate state ...
return _value;

}
}

Assume that exampleContract is an instance of ExampleContract, and App
frontend uses web3.js, you can get the return value if you run it under
JavaScript VM.

var returnValue = exampleContract.foo.call(2);
console.log(returnValue) // 2

But once the contract call is submitted, it takes some time for miner to pack
contract calls into the block as formal transactions. That is why we cannot get the
return value of contract call instantly.

var returnValue = exampleContract.foo.sendTransaction(2, {from:
web3.eth.coinbase});

console.log(returnValue) // transaction hash

sendTransaction function always returns the submitted transaction’s hash. The
reason why function does not return value to the frontend is that the transaction is
probably not packed and is not on-chain yet.

If a return value is needed, the recommendation will be an event, which is event
intend to do.

3.8 Event 71

contract ExampleContract {
event ReturnValue(address indexed _from, int256 _value);
function foo(int256 _value) returns (int256) {

ReturnValue(msg.sender, _value);
return _value;

}
}

Frontend can return values:

var exampleEvent = exampleContract.ReturnValue({_from: web3.
eth.coinbase});
exampleEvent.watch(function(err, result) {
if (err) {

console.log(err)
return;

}
console.log(result.args._value)
// check that result.args._from is web3.eth.coinbase then
// display result.args._value in the UI and call
// exampleEvent.stopWatching()

})
exampleContract.foo.sendTransaction(2, {from: web3.eth.
coinbase})

Once the transaction which invokes foo() is mined, the callback function in watch
will be triggered. And it will allow frontend to get return value from foo().

3.8.2 Async Trigger with Data

Event can be seen as an asynchronized trigger with data. If a contract needs to
interact with frontend, the contract will send an event; If frontend is listening on
event, or a contract needs to trigger frontend, the contract will send an event. If
frontend is listening on event, frontend will capture the event from the contract and
take some action, for example: show some message, etc.

3.8.3 Cheap Storage

Event can also be used as a cheaper storage. In the yellow paper of Ethereum, event
is considered as a log which has LOG opcodes. Data can be saved into LOG.

72 3 Solidity Basics

Whenever an event is triggered, its log is written into the blockchain. Events and logs
may cause confusion.

Logs are designed as some type of storage and it costs much less gas than contract
storage does. In Logs, each byte will cost 8 gas, while contract storage variable will
cost 20,000 gas every 32 bytes. Although logs can save gas, logs are not accessible
from other contracts.

Besides acting as a trigger to frontend, a log can also be used as a cheaper storage.
An example is rendering historical data from logs.

A crypto currency exchange may need to show the charging and withdrawal
history of a user. A solution is to save all charging records to logs which is
comparatively cheaper than save them in the contract. Exchange platform only
needs to know account balance which can be saved in contract, all the history info
can be saved somewhere else, for example, log.

contract CryptoExchange {
event Deposit(uint256 indexed _market, address indexed _sender,

uint256 _amount, uint256 _time);
function deposit(uint256 _amount, uint256 _market) returns

(int256) {
Deposit(_market, msg.sender, _amount, now);

}
}

Assume that we need to update UI when the user is in the process of charging, we
show how an event can be used as a trigger with data. Assume cryptoExContract is
an instance of a CryptoExchange.

var depositEvent = cryptoExContract.Deposit({_sender:
userAddress});
depositEvent.watch(function(err, result) {
if (err) {
console.log(err)
return;

}
})

_sender is defined as indexed to increase the efficiency of retrieving event.

event Deposit(uint256 indexed _market, address indexed _sender,
uint256
_amount, uint256 _time)

3.8 Event 73

Event listening will be started after event is instantiated. When UI is loaded,
Deposit is not effective yet. So we need to collect all information starting from block
0, and this can be implemented by adding “fromblock” parameter to event.

var depositEventAll = cryptoExContract.Deposit({_sender:
userAddress},
{fromBlock: 0, toBlock: 'latest'});
depositEventAll.watch(function(err, result) {
if (err) {
console.log(err)
return;

}
// append details of result.args to UI

})

If we need to render UI, we need to invoke depositEventAll.stopWatching().

3.8.4 Indexed Parameter in Event

An event can have maximum to three indexed parameters. For example, an event is
defined as below:

event Transfer(address indexed _from, address indexed _to,
uint256 _value) .

This means that a frontend application can monitor token transfer:

• Send from an address: tokenContract.Transfer({_from: senderAddress})
• Receive from an address: tokenContract.Transfer({_to: receiverAddress})
• Transfer from an address to another address: address tokenContract.Transfer

({_from: senderAddress, _to: receiverAddress})

3.9 Inheritance

3.9.1 Single Inheritance

Solidity supports multiple inheritances through copy mechanism. All functions are
virtual, which means that furthest derivation will be called unless the contract is
specified explicitly. Derived contract should provide all parameters required by all
parent contracts. Therefore, two methods can be employed, as shown below:

74 3 Solidity Basics

pragma solidity ^0.4.0;
contract Base {

uint x;
function Base(uint _x) { x = _x; }

}
contract Derived is Base(7) {

function Derived(uint _y) Base(_y * _y) {
}

}

• Use “is Base(7)” to inherit directly
Convenient for the situation that constructor is constant.

• As a part of the constructor of derived contract Base(_y * _y)
Fit for constructor parameter specified by derived contract.

If both methods above are used, the second one will have higher priority (Usually,
we just use one of them).

3.9.2 Multi-Inheritance

In multi-inheritance, the order of base contracts is very important. When a contract
inherits from multiple contracts, there will be only one contract created. Solidity
copies code from all inherited contracts into inheriting contract. If inheritance leads
to the name conflicts of modifier or function in one contract, an error will occur. By
the same token, if there are name conflicts between event and modifier, or between
event and function in contract, an error will be triggered.

Solidity supports multiple inheritance, meaning that one contract can inherit
several contracts. Multiple inheritance introduces ambiguity called Diamond Prob-
lem: if two or more base contracts define the same function, which one should be
called in the child contract? Solidity deals with this ambiguity by using reverse C3
Linearization (an algorithm used primarily to obtain the order in which methods
should be inherited in the presence of multiple inheritance), which sets a priority
between base contracts. That way, base contracts have different priorities, so the
order of inheritance matters. Neglecting inheritance order can lead to unexpected
behavior. When inheriting multiple contracts, especially if they have identical
functions, a developer should carefully specify inheritance in the correct order.
The rule of thumb is to inherit contracts from more/general/to more/specific/.

A programming language supporting multiple inheritance should solve several
problems. One of them is diamond inheritance problem (Fig. 3.2).

Solidity solution for Diamond Problem is based on Python, which use C3_line-
arization mechanism to force converting base contracts to a directed acyclic graph
(DAG).

3.9 Inheritance 75

pragma solidity ^0.4.0;
contract base {}
contract A is base {}
contract C is A, base {}

The code snippet above will throw an error since contract C requests contract base
to rewrite contract A (since the inheritance order is A and then base), while contract
A rewrites contract base. And this will cause an insolvable conflict to Solidity
compiler.

3.10 Miscellaneous

3.10.1 Built-in Variable

3.10.1.1 Special Variable

No 变量 说明

1 block.blockhash (uint
blockNumber) returns (bytes32)

Block hash for the specified block number. Only support
latest 256 blocks (excluding current block)

2 block.coinbase (address) Current block miner address

3 block.difficulty (uint) Current block difficulty

4 block.gaslimit (uint) Current block gaslimit

5 block.number (uint) Current block number

6 block.timestamp (uint) Current block timestamp

7 msg.data (bytes) calldata

(continued)

Fig. 3.2 Diamond
inheritance problem

76 3 Solidity Basics

No 变量 说明

8 msg.gas (uint) Current gas remainder

9 msg.sender (address) Current call initiator

10 msg.sig (bytes4) First 4 bytes of calldata which is function signature

11 msg.value (uint) Ether amount used for this call. Unit is wei

12 now (uint) Current block timestamp. Equals to block.timestamp

13 tx.gasprice (uint) Transaction gas price

14 tx.origin (address) Transaction initiator

3.10.1.2 Mathematical and Cryptographic Functions

No Variable Description

1 keccak256(...) returns (bytes32) Using Keccak-256 to calculate hash

2 sha3(...) returns (bytes32) Equals to keccak256()

3 sha256(...) returns (bytes32) Using SHA-256 to calculate hash value

4 ripemd160(...) returns (bytes20) Using RIPEMD-160 to calculate hash value

5 ecrecover (bytes32 hash, uint8 v,
bytes32 r, bytes32 s) returns (address)

Recover public key from signature. Return 0 if
error

6 revert() Transaction rollback

Please bear in mind that Keccak and sha-3 are not the same. In 2007,
U.S. National Institute of Standard and Technology (NIST) initiated a competition
about SHA-3. In 2012, Keccak team won the competition. From then on, developers
implemented lots of “sha3” solution based on Keccak. However, in 2014, NIST
modified Keccak solution and released FIPS 202, and this updated proposal becomes
official SHA-3 standard on Aug 2015. Many “old” program still use Keccak, and do
not upgrade to official SHA-3 standard. We explain the difference between SHA-3
and Keccak below and hope it can be of help to programmers (Fig. 3.3).

Please note that “old” code based on Keccak does not generate the same hash
value as SHA-3 does. So, if using a “sha3” library, you should be crystal clear that
the library is based on Keccak or based on standard SHA-3. A simple solution is
doing a test for empty input:

Fig. 3.3 SHA2/KECCAK/SHA3

3.10 Miscellaneous 77

SHA-3 standard output is:

a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4
b80f8434a

Many old Keccak-256 outputs are:

c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad
8045d85a470

So we must use terminology correctly and precisely: SHA-3 and Keccak. By the
same token, you should validate the library is a real SHA-3 before using it. You may
make mistakes based on unsolid assumption. For example, NPM’s sha3 library is not
conformed to standard SHA-3.

To Ethereum community, Ethereum uses algorithms in SHA-3 family and there-
fore enjoys the benefit brought by them. But be cautious that there is a little
difference between Ethereum protocol and standard FIPS 202 implementations. In
Ethereum yellow paper, it says Ethereum use “Keccak-256 hash function (the
winner of SHA-3 competition).”

3.10.1.3 Address Related

No 变量 说明

1 <address>.balance (uint256) Account balance of Address, unit is wei

2 <address>.transfer (uint256 amount) Send specified amount of ether. Unit is wei
and throw exception if error occurs

3 <address>.send (uint256 amount) returns
(bool)

Send specified amount of ether. Unit is wei
and return false if error occurs

4 <address>.call(...) returns (bool) Initiate low-level call. Return false if failed

5 <address>.callcode(...) returns (bool) Initiate low-level callcode. Return false if failed

6 <address>.delegatecall(...) returns (bool) Delegatecall call, return false if fail

3.10.1.4 Contract Related

Every contract has the following three global functions:

• this: Current contract object, and it can be converted to Address type explicitly.
• selfdestruct: Self-destruction function of contract, it will send ether in contract to

the specified address.
• suicide: Equals to selfdestruct.

78 3 Solidity Basics

3.10.2 Special Unit

Solidity uses some specific currency unit and time unit. The following contains the
details.

3.10.2.1 Currency Unit

When a digital literal is combined with wei, finney, szabo, or ether, we can convert
the number between them. The relationship between different currency units is like
below:

1 ether ¼¼ 10^3 finney ¼¼ 1000 finney
1 ether ¼¼ 10^6 szabo
1 ether ¼¼ 10^18 wei
A little story: Ethereum currency unit is actually the name of cryptographers.

Entrepreneurs of Ethereum pay respect to those cryptographers for their contribu-
tions in the digital currency area. They are:

wei: Wei Dai, Cryptographer, released B-money.
finney: Hal Finney, Cryptographer, the proposer of Proof of Work mechanism.
szabo: Nick Szabo, Cryptographer, the proposer of smart contract.
Besides the basic Unit—Wei, Ethereum also uses other currency units for user

convenience. They are listed as below:

No. Variables Descriptions

wei 1 wei 1

Kwei (babbage) 1e3 wei 1,000

Mwei (lovelace) 1e6 wei 1,000,000

Gwei (shannon) 1e9 wei 1,000,000,000

microether (szabo) 1e12 wei 1,000,000,000,000

milliether (finney) 1e15 wei 1,000,000,000,000,000

ether 1e18 wei 1,000,000,000,000,000,000

3.10.2.2 Time Unit

Seconds, minutes, hours, days, weeks, years all can be used as a suffix, and can be
converted between each other. Default time unit is seconds. The default rules are as
follow:

1 ¼ 1 second
1 minutes ¼ 60 seconds
1 hours ¼ 60 minutes
1 days ¼ 24 hours
1 weeks ¼ 7 days
1 years ¼ 365 days

3.10 Miscellaneous 79

Please be careful if you want to use these units for calculation purpose since leap
year, leap month, and leap day exist.

3.10.3 Type Cast and Inference

uint24 x = 0x123;
var y = x;

Function parameters including return values cannot use var which does not have
an explicit type. Please be aware that type inference is based on the first variable.
Following loop “for (var i ¼ 0; i < 2000; i++) {}” will be infinite loop because type
of i is inferenced to uint8 and the value i will never cross 2000.

pragma solidity ^0.4.4;
contract deadloop{

function a() returns (uint){
uint count = 0;
for (var i = 0; i < 2000; i++) {
count++;
if(count >= 2100){

break;
}

}
return count;

}
}

3.10.3.1 Implicit Conversion

If the operator supports different types on both sides, the compiler will try an implicit
conversion. And the assignment is alike. Generally, the implicit conversion needs to
ensure that conversion will not lose data and syntactically valid. For example, uint8
can be converted to uint16, uint256. However, int8 cannot be converted to uint256
since –1 is not in range of uint256.

For any unsigned integer, small type values can be converted to larger type value.
For example, uint160 can be converted to address.

80 3 Solidity Basics

3.10.3.2 Explicit Conversion

If automatic type conversion is not allowed, but you are absolutely sure that typecast
is valid, you can force typecast. Please be cautious that invalid type cast will cause an
error. So you must test the conversion comprehensively.

pragma solidity ^0.4.0;
contract DeleteExample{

uint a;
function f() returns (uint){

int8 y = -3;
uint x = uint(y);
return x;

}
}

From the screenshot below, it can be seen that x become a huge uint256 number
after running f(): “uint256: 115792089237316195423570985008687907853269984
665640564039457584007913129639933” (Fig. 3.4).

If it is converted to a smaller size type, the upper bit will be trimmed.

uint32 a = 0x12345678;
uint16 b = uint16(a); // b is 0x5678

Fig. 3.4 Int value explicitly converted to unsigned int

3.10 Miscellaneous 81

3.10.4 Exception

Raising an exception results in the termination of current execution and rollback of
the transaction (Any changed value and account balance change will be reverted).
An exception can also be bubbled up through the Solidity call stack. User can trigger
an exception through the following methods:

• Use throw.
• Use require, but parameter set to false.

In one word, assert is used to determine if the condition is satisfied and require is
used to validate input.

3.10.5 Assembly

In this section, we will introduce inline assembly in detail. Please refer to this gist
post2 for all the details of opcodes. Here are some most-used opcodes:

Function style opcode:mul(1, add(2, 3)) equals to: push1 3 push1 2 add push1
1 mul

Inline local variable:let x :¼ add(2, 3) let y :¼ mload(0x40) x :¼ add(x, y)
Accessible external variable:function f(uint x) { assembly { x :¼ sub(x, 1) } }
Label:let x :¼ 10 repeat: x :¼ sub(x, 1) jumpi(repeat, eq(x, 0))
Loop:for { let i :¼ 0 } lt(i, x) { i :¼ add(i, 1) } { y :¼ mul(2, y) }
switch:switch x case 0 { y :¼ mul(x, 2) } default { y :¼ 0 }
Function call:function f(x) -> y { switch x case 0 { y :¼ 1 } default { y :¼mul(x,

f(sub(x, 1))) } }
Please note that inline assembly is a low-level method to access EVM. And it

skips over multiple security mechanism built-in EVM.
Following example show how to access a contract through a library function and

save return value into a bytes variable. Some functionality cannot be realized by
normal Solidity programming. Inline assembly can be of help in such situations.

pragma solidity ^0.4.0;

library GetCode {
function at(address _addr) returns (bytes o_code) {

assembly {
// Get the code size
let size := extcodesize(_addr)

(continued)

2https://gist.github.com/hayeah/bd37a123c02fecffbe629bf98a8391df.

82 3 Solidity Basics

https://gist.github.com/hayeah/bd37a123c02fecffbe629bf98a8391df

// Allocate byte array for output
// by using o_code = new bytes(size)
o_code := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f),

not(0x1f))))
// Load size bytes of data on stack to o_code
mstore(o_code, size)
// Retrieve code and only assembly can do this job.
extcodecopy(_addr, add(o_code, 0x20), 0, size)

}
}

}

Inline assembly is useful when Solidity code cannot implement in an efficient
way. But, you must be cautious that inline assembly programming is difficult and
dangerous since the compiler will skip boundary check for inline assembly. So only
use it if you are tackling a complex problem and you know what you are doing.

pragma solidity ^0.4.0;
library VectorSum {

// sumSolidity()’s efficiency is pretty low since optimizer can
not

//skip boundary check for array access
function sumSolidity(uint[] _data) returns (uint o_sum) {

for (uint i = 0; i < _data.length; ++i)
o_sum += _data[i];

}
// If we are absolutely confident that cross boundary is impossible,
we
// can skip boundary check to increase efficiency
// We need to add 0x20 since the storage 0 will be used to store array
// length
function sumAsm(uint[] _data) returns (uint o_sum) {

for (uint i = 0; i < _data.length; ++i) {
assembly {

o_sum := mload(add(add(_data, 0x20), mul(i, 0x20)))
}

}
}

}

In this chapter, we learned all basics of Solidity: keyword, statement, modifier,
data location, event, etc. We should be able to develop some small and simple
contract in Solidity. Next, we will switch to introduce some popular protocols in use
in real world.

3.10 Miscellaneous 83

Chapter 4
Solidity Advanced Topics

In this chapter, we will discuss some advanced topics about Solidity programming,
which includes:

• Some specialities of Ethereum Solidity programming
• Some well-known EIP Protocol: ERC20, ERC721
• Call between smart contract

4.1 Keyword “This”

Just like C++ has keyword “this,” and Python has keyword “self.” Solidity also has
keyword—this

pragma solidity ^0.4.21;
contract Impossible {
function Impossible() public { // constructor

this.test();
}
function test() public pure returns(uint256) {

return 2;
}

}

This is a keyword. But using it in the constructor can cause a problem: this object
is not created yet in the constructor. So, in the example above, this.test() will throw
an exception.

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_4&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_4#DOI

4.2 ERC20 Interface

ERC20 token is much more well-known now. In this section, we are going to
describe the details.

pragma solidity ^0.4.0;
contract MyToken {
address public creator; // Contract creator
uint256 public totalSupply; // Token total supply
mapping (address => uint256) public balances; // Account balance

function MyToken() public {
creator = msg.sender;
totalSupply = 10000;
balances[creator] = totalSupply;

}
function balanceOf(address owner) public constant returns
(uint256){

return balances[ownesr];
}
function sendTokens(address receiver, uint256 amount) public
returns(bool){

address owner = msg.sender;
require(amount > 0);
require(balances[owner] >= amount);
balances[owner] -= amount;
balances[receiver] += amount;
return true;

}
}

• creator is an address which saves the owner of contract.
• totalSupply is a 256-bit unsigned integer which saves the total amount of token.
• balance is a dictionary mapping from an address to unsigned number, which

saves the amount of token in a specific address.

Next, there is a constructor which has the same name as the contract. The
constructor is called once only during contract deployment. In the constructor, we
set the owner of the contract. It is common that function call needs to know whether
the contract owner is the same as the function caller—msg.sender. And at last, the
contract defines a total supply of 10,000 tokens and stores it to the creator’s account.

Next function balanceOf() returns the balance of a specific address. The constant
keyword is used here. Solidity has two types of functions: constants and
non-constant.

The non-constant function is used to change state, while the constant function is
read-only which means constant functions cannot perform any state-change opera-
tion. In actual use, there are two types of constant functions:

• The view keyword means that function cannot perform any state-change opera-
tion (equals to constant).

86 4 Solidity Advanced Topics

• The pure keyword is stricter than view and constant. It means that pure function
cannot read state and cannot perform any state-change operation.

The last function allows us to transfer tokens between different addresses. It is
non-constant since the function will change the balance of account. It takes receiver
address and number of tokens as input parameters and returns a Boolean value which
indicates the status of transaction.

Here are two conditions that must be true before execution of the function.

...
require(amount > 0);
require(balances[owner] >= amount);
...

Require is a method used for validation. It evaluates a condition and will revert if
the condition is not satisfied. So the transfer amount must be larger than 0 and the
sender must have enough balance in his account.

At last, we need to subtract the token amount from the owner’s balance and add it
to the receiver’s balance.

...
balances[owner] -= amount;
balances[receiver] += amount;
return true;
}

You can find the official definition of ERC20.1

4.2.1 Methods

Please note: the caller must process the situation if a call returns false. The caller
cannot assume that all functions return successfully.

4.2.1.1 totalSupply

function totalSupply() constant returns (uint256 totalSupply)

Get the total supply of token.

1https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

4.2 ERC20 Interface 87

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

4.2.1.2 balanceOf

function balanceOf(address _owner) constant returns (uint256
balance)

Get account balance of the _owner address.

4.2.1.3 transfer

function transfer(address _to, uint256 _value) returns (bool
success)

Send _value amount of token to address _to.

4.2.1.4 transferFrom

function transferFrom(address _from, address _to, uint256 _value)
returns(bool success)

Send _value amount of token from address _from to address _to.
transferFrom method is used to withdraw fund from a contract, allowing sending

token at will, such as deposit ether to a contract address or charge in form of tokens.
The function will fail unless msg.send gets approval from _from account somehow.
We suggest to use it after getting approval.

4.2.1.5 approve

function approve(address _spender, uint256 _value) returns (bool
success)

This function allows _spender to withdraw _value amount of token from your
account. If the function is used multiple times, the latter call will reset the quota of
the previous call.

88 4 Solidity Advanced Topics

4.2.1.6 allowance

function allowance(address _owner, address _spender) constant
returns
(uint256 remaining)

Return amount of token which _spender can send from _owner’s account.

4.2.2 Events

Transfer

event Transfer(address indexed _from, address indexed _to,
uint256 _value)

Triggered when token is transferred.
Approval

event Approval(address indexed _owner, address indexed _spender,
uint256
_value)

Triggered when approve (address _spender, uint256 _value) is called.

4.2.3 OpenZeppline

OpenZeppline is an open-source framework providing re-usable smart contract
templates to develop Dapp, protocol, and DAO. Using standard, fully tested code
under intensive community review will lower the risk caused by vulnerabilities.

$ npm install zeppelin-solidity

4.2 ERC20 Interface 89

Now, let us have a look at how to implement ERC20 token with OpenZeppelin
library.

import 'zeppelin-solidity/contracts/token/BasicToken.sol';
import 'zeppelin-solidity/contracts/ownership/Ownable.sol';
contract MyToken is BasicToken, Ownable {

uint256 public constant INITIAL_SUPPLY = 10000;
function MyToken() {
totalSupply = INITIAL_SUPPLY;
balances[msg.sender] = INITIAL_SUPPLY;

}
}

As can be seen, some core implementations are removed. Actually, they are not.
We only let OpenZeppeline handle these core functionalities. It is meaningful to
reuse secure design since risk being attacked will be largely reduced.

Our contract inherits from two OpenZeppeline pre-defined contracts: Ownable
and BasicToken. Solidity supports multi-inheritance, and please note that the inher-
itance order of base contract is very important.

Our MyToken is derived from Ownable. Let us have a look of the contract:

OpenZeppelin Ownable contract

Ownable provides three functions:

• It defines a special address type variable—"owner."
• It allows us to switch the ownership of a contract.
• It provides a useful onlyOwner modifier, and this modifier ensures that a function

can be only called by owner.

Besides, Mytoken inherits from BasicToken contract.

OpenZeppelin BasicToken contract

The implementation is very similar to MyToken with only a few differences: it
uses sendTokens instead of transfer, and it implements all the functionalities of
transfer except Transfer event.

Another important point is SafeMath. OpenZeppelin suggests using SafeMath
library for mathematics operations with security check. SafeMath is most frequently
used since it ensures that math operations will not cause overflow/underflow.

90 4 Solidity Advanced Topics

4.3 ERC721 Interface

In 2017, Cryptokitties game showcases how non-fungible assets are created and how
to trade them on Ethereum. In the Game, player feeds and trades cat. But the most
important is: all cats are on blockchain and only their owner can feed and trade
themselves. In traditional game, data are stored on a centralized server and can be
modified if necessary by game owner. Contrarily, in Cryptokitties game, the player is
playing in a trustless decentralized network. Their ownership of cat can be proved
undoubtedly: if you own a cat, blockchain can prove that the cat is yours, not others.

4.3.1 ERC721 Protocol

ERC721 standard includes four interfaces: one is ERC721, another is the standard
receiving ERC721 token, the other two are optional extensions. Each ERC-721
standard contract must implement ERC7212 and ERC165 interface.3

Generally, ERC721 tokens standard must solve the following problems:

• Ownership—How to process the ownership of token contract?
• Creation—How to create token contract?
• Transfer & Authorization—How to transfer token and how we approve other

addresses (contract or EOA) to be able to transfer our tokens?
• Destroy—How to destroy token?

The following examples all follow OpenZeppelin’s ERC721 token standard.
Please refer to ERC721token.sol4 for details

2https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
3https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165.md
4https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/ERC721/
ERC721Token.sol

4.3 ERC721 Interface 91

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165.md
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/ERC721/ERC721Token.sol
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/ERC721/ERC721Token.sol

4.3.1.1 Token Ownership

ERC20 now becomes a standard and it is easy to understand. From the ownership
point of view, ERC20 has a mapping variable which maps token balance to an
address:

mapping(address => uint256) balances

If a user buys ERC20 token, the ownership of token can be verified by contract
since contract keeps a record about how many tokens an address holds. If a user
wants to transfer ERC20 tokens, the contract will validate the transaction through
checking balances mapping: a transaction is valid only when user account holds
enough tokens. Since balance mapping is initialized to 0, if a user never interacts
with the token contract, his account balance will be 0.

As stated above, ERC721 is a non-fungible token (NFT). This is to say, Tokens of
the same class or contract have different IDs. So, not like ERC20 mapping balance to
an address, ERC721 token has its own unique ID which is used to identify the
ownership. For this reason, in the ERC721 standard, ownership is determined by an
array of token indexes or IDs that are mapped to users’ address. Since each token ID
is unique, we have to look at each individual token created by the contract. The main
contract keeps a list of all the ERC721 tokens created in that contract in an array, so
each token has its respective index within the context of all ERC721 tokens available
from that particular contract via the allTokens array.

uint256[] internal allTokens

In addition to the array of token indexes in the entire contract, each individual
address has an array of token indexes or IDs that are mapped to their address so that
developers know which tokens a user owns.

mapping (address => uint256[]) internal ownedTokens

This simple difference spurs many additional requirements of an ERC721 token.
With an ERC20 token, we check against a balance, but now, we need to check
ownership against a specific index of a token. And we need to rearrange array if
necessary

In order to verify ownership of a certain token ID, we map each token index or ID
to an owner. In this way, every time we can check the address which a token ID
maps to.

92 4 Solidity Advanced Topics

mapping (uint256 => address) internal tokenOwner

Since we already have ownedTokens, why we need tokenOwner? The reason is
the array in Solidity programming: when we delete an element in an array, the
element is not deleted but is replaced with a zero. For example, assume that we have
an array myarray¼ [2 7 12], which is of length 3. Then we call a function that says to
delete myarray[myarray.length.sub(1)]. Although we may expect that myarray ¼
[2 7], we actually have the following array myarray¼ [2 7 0], and it would still be of
length 3. There are cases in which we would like to delete or remove a token from the
ownership of an address. In addition to delete tokens from owner array, we also need
to rearrang the array. We will see later on how this information comes into play when
we transfer (removing ownership) and burntokens. The ownedTokensIndex maps
each token ID to its respective index in its owner’s array. As stated below, we also
map the token ID to its index in the allTokens array as well.

// Mapping from token ID to index of the owner tokens list
mapping(uint256 => uint256) internal ownedTokensIndex;
//Mapping from token id to position in the allTokens array
mapping(uint256 => uint256) internal allTokensIndex;

We also need to keep track of how many ERC721 tokens that a user or address
actually owns. ownedTokensCount is introduced for this purpose. This
ownedTokensCount is updated as we purchase, transfer, or potentially burn tokens
accordingly.

mapping (address => uint256) internal ownedTokensCount

4.3.1.2 Token Creation

In the ERC20 design, we have a value that maintains total available token supply,
totalSupply_. Also, ERC20 contract has a mapping variable which keeps a balance
of tokens. In below, MyToken is used to set the value of the totalSupply_ of tokens.
ERC20 standard was expanded to include a mint function in which a desired number
of tokens are added to the totalSupply_ and balances are mapped accordingly. It can
be seen that balances variable is updated in mint function.

4.3 ERC721 Interface 93

uint256 totalSupply_
//Example of setting token supply via constructor

contract MyToken {
function MyToken(uint _setSupply)

{ totalSupply_ = _setSupply_ }
...

//Example of maintaining a variable token supply via minting
function mint(address _to, uint256 _amount)
onlyOwner
canMint
public
returns (bool)
{

totalSupply_ = totalSupply_.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(address(0), _to, _amount);
return true;

}

As to ERC721’s, we have learned that since each individual token is unique, we
must create each individual token. Because we maintain an array of tokens in an
ERC721 standard, we need to add each token to that array separately.

Here addTokenTo() uses super.addTokenTo() to first call the addTokenTo()
function in basic ERC721 contract. Essentially, over the course of these two
functions, all global ownership variables are updated. The functions take two
parameters: _to or the address to which the token will be owned and _tokenId or
the unique ID of the token. And caller is limited to the owner of the contract. In this
case, the user can choose any unique number ID. First, in the ERC721BasicToken
contract, we check that the token ID is not already owned. Then we set the token
owner of the requested token ID, and add one to the number of owned tokens of that
individual account. Going back to the full implementation contract, we also update
the array of the new owner’s (_to) tokens by adding this new token to the end of their
ownedTokens array and saving the index of that new token.

// call this function in ERC721Token.sol
function addTokenTo(address _to, uint256 _tokenId) internal {

super.addTokenTo(_to, _tokenId);
uint256 length = ownedTokens[_to].length;
ownedTokens[_to].push(_tokenId);
ownedTokensIndex[_tokenId] = length;

}
// Call this function in ERC721BasicToken.sol
function addTokenTo(address _to, uint256 _tokenId) internal {

require(tokenOwner[_tokenId] == address(0));
tokenOwner[_tokenId] = _to;
ownedTokensCount[_to] = ownedTokensCount[_to].add(1);

}

94 4 Solidity Advanced Topics

From the above, we can see that addTokenTo() updates an address to an individ-
ual. It can be seen below that when we call _mint() from our full implementation
ERC721 contract, we jump up to our basic implementation, which ensures that we
are not minting to an address of zero and calls addTokenTo(), which will actually
call back to our full implementation contract to kick off the addTokenTo() calls.
After the _mint() function in the basic contract is completed, back in our full
implementation, we add the _tokenId to our allTokensIndex’s mapping as well as
our allTokens array.

function _mint(address _to, uint256 _tokenId) internal {
super._mint(_to, _tokenId);
allTokensIndex[_tokenId] = allTokens.length;
allTokens.push(_tokenId);

}
function _mint(address _to, uint256 _tokenId) internal {

require(_to != address(0));
addTokenTo(_to, _tokenId);
Transfer(address(0), _to, _tokenId);

}

We have created tokens and token IDs, but they are not holding any data yet.
Example below shows how to give a string to URI data by looking up a mapping
from a token ID to a string.

// Optional mapping for token URIs
mapping(uint256 => string) internal tokenURIs;

The following _setTokenURI() uses the token ID created via _mint() and desired
URI information, to set the data that is mapped to a token ID in tokenURIs. Please
note that we must be sure that a token ID exists prior to assigning data.

function _setTokenURI(uint256 _tokenId, string _uri) internal {
require(exists(_tokenId));
tokenURIs[_tokenId] = _uri;

}
function exists(uint256 _tokenId) public view returns (bool) {

address owner = tokenOwner[_tokenId];
return owner != address(0);

}

4.3 ERC721 Interface 95

4.3.1.3 Transfer & Allowance

We could use transfer() to transfer ERC20 token. In transfer(), we specify a target
address and amount of token. And then adjust the account balance in the contract.

function transfer(address _to, uint256 _value) public returns
(bool)
{

require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;

}

Allowance means that we can grant approval to another contract or address to be
able to transfer our ERC20 tokens. And this requirement is common in distributed
applications, such as escrows, games, auctions, etc. Hence, we need a way to
approve other address to spend our tokens. Also, another version of the transfer
function requires the contract to check the allowance.

In the ERC20 standard, we have a global variable “allowed” in which we keep the
mapping from an owners address to an approved spender’s address and then to the
amount of tokens. Calling approve() function can add an approval to its desired
_spender and _value. The amount of token is not checked here and it will be checked
in transfer().

//Global variable
mapping (address => mapping (address => uint256)) internal allowed
//Allowance of another address to spend your tokens
function approve(address _spender, uint256 _value)
public
returns (bool)
{

allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;

}

Once the approval is granted, approved spender can use transferFrom() to transfer
tokens. _from is the owner address and _to is receiver’s address and _value is the
required number of tokens to be sent. First, we check if the owner actually possess
the required number of tokens.

require(_value � balances[_from])

96 4 Solidity Advanced Topics

And then we check if msg.sender gets approval: Check global variable—allowed,
and then update balances and allowed amount accordingly. There are two functions
increaseApproval() and decreaseApproval() to increase/decrease the quota.

function transferFrom(address _from, address _to, uint256 _value)
public

returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].

sub(_value);
Transfer(_from, _to, _value);
return true;

}

Since each ERC721 token is unique, we need to approve an address for transfer-
ring by token ID and to transfer token ID. tokenApprovals is a global variable which
maps a token ID or index to an address. If approved, the address is able to transfer a
specific token by its ID.

mapping (uint256 => address) internal tokenApprovals;
function getApproved(uint256 _tokenId) public view returns
(address) {

return tokenApprovals[_tokenId];
}

operatorApprovals is another global variable which maps the owner’s address to
an approved spender address and then maps to a Boolean variable. If the Boolean
variable is set to true, this means that the owner allows this address to process all
ERC721 tokens owned. We could use setApprovalForAll() to authorize an address
to handle all tokens.

mapping (address => mapping (address => bool)) internal
operatorApprovals;
function isApprovedForAll(address _owner, address _operator)
public view returns (bool) {

return operatorApprovals[_owner][_operator];
}

function setApprovalForAll(address _to, bool _approved) public {
require(_to != msg.sender);
operatorApprovals[msg.sender][_to] = _approved;
ApprovalForAll(msg.sender, _to, _approved);

}

4.3 ERC721 Interface 97

In approve() function, we check the ownership or check if msg.sender is approved
to handle all tokens. Then we call getApproved() to check if tokens’ owner and
spender are not address(0). As the last step, we set address _to to tokenapprovals
[_tokenId], which means that address _to gets approval to process ERC721 token
with _tokenId.

function approve(address _to, uint256 _tokenId) public {
address owner = ownerOf(_tokenId);
require(_to != owner);
require(msg.sender == owner || isApprovedForAll(owner, msg.

sender));
if (getApproved(_tokenId) != address(0) || _to != address(0)) {
tokenApprovals[_tokenId] = _to;
Approval(owner, _to, _tokenId);

}
}

Now, we are going to describe how to actually transfer ERC721. The full
implementation of transferFrom() doing the following:

1. The sender and receiver addresses are specified along with the _tokenId to
transfer.

2. Using canTransfer() modifier to ensure that the msg.sender is approved to transfer
the token or owns it.

3. The clearApproval() function is used to remove the approval of the transfer from
the original owner of the token, so that a previously approved spender may not
continue to transfer the token.

4. removeTokenFrom() is called in the ERC721 full implementation contract. The
token is removed from the ownedTokensCount mapping, the tokenOwner
mapping.

5. One more twist is that we move the last token in the owner’s ownedTokens array
to the index of the token that is being transferred and shorten the array by one.

6. Lastly, we use the addTokenTo() function to add this token index to its new
owner.

modifier canTransfer(uint256 _tokenId) {
require(isApprovedOrOwner(msg.sender, _tokenId));
_;

}
function isApprovedOrOwner(address _spender, uint256 _tokenId)
internal view returns (bool) {

address owner = ownerOf(_tokenId);
return _spender == owner || getApproved(_tokenId) == _spender ||

isApprovedForAll(owner, _spender);
}
function transferFrom(address _from, address _to, uint256

(continued)

98 4 Solidity Advanced Topics

_tokenId) public canTransfer(_tokenId) {
require(_from != address(0));
require(_to != address(0));
clearApproval(_from, _tokenId);
removeTokenFrom(_from, _tokenId);
addTokenTo(_to, _tokenId);
Transfer(_from, _to, _tokenId);

}
function clearApproval(address _owner, uint256 _tokenId)
internal {

require(ownerOf(_tokenId) == _owner);
if (tokenApprovals[_tokenId] != address(0)) {
tokenApprovals[_tokenId] = address(0);
Approval(_owner, address(0), _tokenId);

}
}
//Full ERC721 implementation
function removeTokenFrom(address _from, uint256 _tokenId)
internal {

super.removeTokenFrom(_from, _tokenId);
uint256 tokenIndex = ownedTokensIndex[_tokenId];
uint256 lastTokenIndex = ownedTokens[_from].length.sub(1);
uint256 lastToken = ownedTokens[_from][lastTokenIndex];
ownedTokens[_from][tokenIndex] = lastToken;
ownedTokens[_from][lastTokenIndex] = 0;
ownedTokens[_from].length--;
ownedTokensIndex[_tokenId] = 0;
ownedTokensIndex[lastToken] = tokenIndex;

}
//Basic ERC721 implementation
function removeTokenFrom(address _from, uint256 _tokenId)
internal {

require(ownerOf(_tokenId) == _from);
ownedTokensCount[_from] = ownedTokensCount[_from].sub(1);
tokenOwner[_tokenId] = address(0);

}

How do we ensure that we are sending our ERC721 to a contract that can handle
additional transfers? We know an externally owned account (EOA) can use our
ERC721 full implementation contract to trade tokens if desired; however, if we send
our token to a contract that does not have the appropriate functions to trade and
transfer the token via our original ERC721 contract, then the token will be lost.
ERC223 proposal, which is a proposed modification to ERC20 aims to prevent such
erroneous transfers.

In order to avoid issues, the ERC721 full implementation standard introduces the
safeTransferFrom() function. Let us first have a look at ERC721Holder.sol contract.
The ERC721Holder.sol contract is to be part of the wallet, auction, or broker
contract to hold an ERC721 token. The reason this has been standardized goes

4.3 ERC721 Interface 99

back to EIP165 in which the goal is to create “a standard method to publish and
detect what interfaces a smart contract implements.”

How do we detect an interface? We will see a “magic value,”
ERC721_RECEIVED, which is the function signature of the onERC721Received
() function. It is computed by bytes4(keccak256(“onERC721Received(address,
uint256, bytes)”)). When a contract is called, the EVM uses a series of switch
cases to find the function signature that matches the call and executes code accord-
ingly. Consequently, in our ERCHolder contract, we see that the onERCReceived()
function signature will match the ERC721_RECEIVED variable in our
ERC721Receiver interface.

contract ERC721Receiver {
/**
* @dev if receive NFT, then return magic value which equals to
*`bytes4(keccak256("onERC721Received(address,uint256,

bytes)"))`,
* or Get it from `ERC721Receiver(0).onERC721Received.selector`
*/
bytes4 constant ERC721_RECEIVED = 0xf0b9e5ba;

/**
* @notice
* @dev ERC721 contract call this function after `safetransfer`
* This function may raise exception which leads to rollback and
* transfer rejected.
* This function uses about 50,000 gas.
* Must revert if magic value is not returned
* Note: Contract address is msg.sender
* @param _from from address
* @param _tokenId NFT ID transferred
* @param _data extra data with no specified format
* @return

`bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`
*/
function onERC721Received(address _from, uint256 _tokenId,

bytes _data) public returns(bytes4);
}
contract ERC721Holder is ERC721Receiver {
function onERC721Received(address, uint256, bytes) public

returns(bytes4) {
return ERC721_RECEIVED;

}
}

ERC721Holder contract above is not a complete contract for handling ERC721
tokens. This template is meant to provide developers with a standardized interface to
verify that the ERC721Receiver standard interface is used. Developers will need to
extend or inherit the ERC721Holder contract to include functions in their wallet or

100 4 Solidity Advanced Topics

auction contract to handle ERC721’s. Even to hold tokens in escrow developers
would need to add functionality so that this holder contract could make a call to
transfer tokens out of the contract as needed.

//Option 1
function safeTransferFrom(address _from, address _to, uint256
_tokenId) public canTransfer(_tokenId) {

safeTransferFrom(_from, _to, _tokenId, ""); }

//Option 2
function safeTransferFrom(address _from, address _to, uint256
_tokenId, bytes _data) public canTransfer(_tokenId) {

transferFrom(_from, _to, _tokenId);
require(checkAndCallSafeTransfer(_from, _to, _tokenId,

_data)); }

function checkAndCallSafeTransfer(address _from, address _to,
uint256 _tokenId, bytes _data) internal returns (bool) {

if (!_to.isContract()) {
return true;

}
bytes4 retval = ERC721Receiver(_to).onERC721Received(_from,

_tokenId, _data);
return (retval == ERC721_RECEIVED); }

}

// check if an address is a contract
function isContract(address addr) internal view returns (bool) {

uint256 size;
assembly { size := extcodesize(addr) }
return size > 0;

}

There are two choices to check how safeTransferFrom() works:

1. Option 1

Call safeTransferFrom() function with no additional data

2. Option 2

Call safeTransferFrom() function with data in the form of bytes_data.
We use the function isContract() above to see if an address is an actual contract
As before the transferFrom() function is used to remove token ownership from the

_from address and add token ownership to the _to address. However, we have an
additional requirement that we run the checkAndCallSafeTransfer() function. First,
we check that the _to address is an actual contract through the use of the
AddressUtils.sol library. After verifying that _to is a contract address, we check
that calling the onERC721Received() function returns the same function signature
that we are expecting from our standard interface. If the correct value is not returned,

4.3 ERC721 Interface 101

https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/AddressUtils.sol

then the transferFrom() function is rolled back since the _to does not implement the
expected interface.

4.3.1.4 Burning

ERC20 token contract only manages a single mapped balance, so burning tokens
against a specific address only need to adjust respective account balance and
totalSupply_ of tokens as well. This is exactly what burn() does below: _value is
the number of tokens to burn and msg.sender is the owner of the address.

function burn(uint256 _value) public {
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
Burn(burner, _value);
Transfer(burner, address(0), _value);

}

For ERC721 tokens, we need to ensure that the specific token ID or index is
eliminated. _burn()function uses super to call a function in basic ERC721
implementation.

1. Call ClearApproval().
2. Remove the token from ownership via removeTokenFrom().
3. Emit Transfer event to alert this change on the frontend.
4. Eliminate the metadata associated with that token by deleting what is mapped to

that particular token index.
5. Rearrange allTokens array so that the _tokenId index is replaced with the last

token in the array.

function _burn(address _owner, uint256 _tokenId) internal {
super._burn(_owner, _tokenId);
// 清除metadata (if any)
if (bytes(tokenURIs[_tokenId]).length != 0) {
delete tokenURIs[_tokenId];

}
// re-org all tokens array
uint256 tokenIndex = allTokensIndex[_tokenId];
uint256 lastTokenIndex = allTokens.length.sub(1);
uint256 lastToken = allTokens[lastTokenIndex];
allTokens[tokenIndex] = lastToken;
allTokens[lastTokenIndex] = 0;
allTokens.length--;

(continued)

102 4 Solidity Advanced Topics

allTokensIndex[_tokenId] = 0;
allTokensIndex[lastToken] = tokenIndex;

}
}
function _burn(address _owner, uint256 _tokenId) internal {

clearApproval(_owner, _tokenId);
removeTokenFrom(_owner, _tokenId);
Transfer(_owner, address(0), _tokenId);

}

There are many ERC721 examples now, such as: Cryptokitties, Cryptogs,
Cryptocelebrities, Decentraland. There are also a lot of examples of digital asset
and collectibles on OpenSea.

4.3.1.5 Wallet Interface

Wallet app should implement the wallet interface5. A valid ERC721TokenReceiver
needs to implement the function below:

function onERC721Received(address _operator, address _from,
uint256
_tokenId, bytes _data) external returns(bytes4);

And return:

bytes4(keccak256("onERC721Received(address,address,uint256,
bytes)"))

An invalid receiver does not implement the function above, neither return other
content:

contract ValidReceiver is ERC721TokenReceiver {
function onERC721Received(address _operator, address _from,

uint256 _tokenId, bytes _data) external returns(bytes4){
return

bytes4(keccak256("onERC721Received(address,address,uint256,
bytes)"));

}
}

5https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

4.3 ERC721 Interface 103

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

and

contract InvalidReceiver is ERC721TokenReceiver {
function onERC721Received(address _operator, address _from,

uint256 _tokenId, bytes _data) external returns(bytes4){
return bytes4(keccak256("some invalid return data"));

}
}

4.3.2 Metadata

Metadata extension gives the token contract a name and symbol, and took some
extra data to make token unique. The enumerable extension enables to sort token
much easier by attributes than by tokenID. Metadata extension is optional. Metadata
interface allows the contract to retrieve metadata of non-fungible token (NFT): such
as name and other detail information. Please refer to ERC721 standard for details of
ERC721Metadata. Here is the "ERC721 Metadata JSON Schema":

{
"title": "Asset Metadata",
"type": "object",
"properties": {

"name": {
"type": "string",
"description": "Identifies the asset to which this NFT

represents",
},
"description": {

"type": "string",
"description": "Describes the asset to which this NFT

represents",
},
"image": {

"type": "string",
"description": "A URI pointing to a resource with mime type

image/* representing the asset to which this NFT represents.
Consider making any images at a width between 320 and 1080 pixels and
aspect ratio between 1.91:1 and 4:5 inclusive.",

}
}

}

The contract above inherits from TokenERC721.sol and ERC721Metadata
extension.

104 4 Solidity Advanced Topics

contract TokenERC721Metadata is TokenERC721, ERC721Metadata {

Metadata extension has the following three functions:

function name() external view returns (string _name);
function symbol() external view returns (string _symbol);
function tokenURI(uint256 _tokenId) external view returns
(string);

Constructor:

constructor(uint _initialSupply, string _name, string _symbol,
string
_uriBase)
public TokenERC721(_initialSupply){

__name = _name;
__symbol = _symbol;
__uriBase = bytes(_uriBase);

//Add to ERC165 Interface Check
supportedInterfaces[

this.name.selector ^
this.symbol.selector ^
this.tokenURI.selector

] = true;
}
function name() external view returns (string _name){

_name = __name;
}

function symbol() external view returns (string _symbol){
_symbol = __symbol;

}
function tokenURI(uint256 _tokenId) external view returns
(string){

require(isValidToken(_tokenId));
uint maxLength = 78;
bytes memory reversed = new bytes(maxLength);
uint i = 0;
// loop and add byte into array
while (_tokenId != 0) {

uint remainder = _tokenId % 10;
_tokenId /= 10;
reversed[i++] = byte(48 + remainder);

}
// Allocate memory for array
bytes memory s = new bytes(__uriBase.length + i);
uint j;
// Append basic part to array

(continued)

4.3 ERC721 Interface 105

for (j = 0; j < __uriBase.length; j++) {
s[j] = __uriBase[j];

}
// Append tokenId to array
for (j = 0; j < i; j++) {

s[j + __uriBase.length] = reversed[i - 1 - j];
}
return string(s);

}

4.3.3 Enumerable Extension

4.3.3.1 Interface

Enumerable extension is optional. It makes smart contract can publish all NFT list
and make your NFT discoverable from outside. The extension provides three
functions in which the latter two functions make us retrieve token through index.
ERC721 optional enumerable extension standard is defined in https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-721.md.

4.3.3.2 Instance

Our TokenERC721Enumerable contract is inherited from TokenERC721.sol and
implemented ERC721Enumerable extension interface.

contract TokenERC721Enumerable is TokenERC721, ERC721Enumerable {
uint[] internal tokenIndexes;

If the contract contains a self-destruct program, we must add a mapping to record
the mapping from index to token. So, we add the following code:

mapping(uint => uint) internal indexTokens;

If the contract does not contain burn functionality, please ignore indexTokens
below.

Another list is: given a specific address, we need a list recording all tokens related
to this address. tokenOfOwnerByIndex function will use this list. There should be at
least one token for each address which is implemented by two mapping variables:

106 4 Solidity Advanced Topics

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

mapping(address => uint[]) internal ownerTokenIndexes;
mapping(uint => uint) internal tokenTokenIndexes;

The first Mapping maps address to an array which records all token ID owned by
an array element. The second Mapping maps each TokenID to its position of
ownerTokenIndexes.

ownerTokenIndexes[ownerAddress][tokenIndex] = tokenId;
tokenTokenIndexes[tokenId] = tokenIndex;

Next is to create a constructor. We need to add interface into supportedInterfaces
and need to pass initialSupply to TokenERC721’s constructor.

constructor(uint _initialSupply) public TokenERC721
(_initialSupply){

for(uint i = 0; i < _initialSupply; i++){
tokenTokenIndexes[i+1] = i;
ownerTokenIndexes[creator].push(i+1);
tokenIndexes.push(i+1);
indexTokens[i + 1] = i;

}
//Add to ERC165 Interface Check
supportedInterfaces[

this.totalSupply.selector ^
this.tokenByIndex.selector ^
this.tokenOfOwnerByIndex.selector

] = true;
}

4.3.3.3 totalSupply

Function totalSupply is very simple. It simply returns the length of tokenIndexes.
Since all token is saved in array—tokenIndexes, the length of the array is the number
of tokens.

function totalSupply() external view returns (uint256){
return tokenIndexes.length;

}

4.3 ERC721 Interface 107

4.3.3.4 tokenByIndex

tokenByIndex is simple too. Index keeps the position of tokens in an array. We need
to check the range of tokenByindex before using it.

function tokenByIndex(uint256 _index) external view returns
(uint256){

require(_index < tokenIndexes.length);
return tokenIndexes[_index];

}

4.3.3.5 tokenOfOwnerByIndex

tokenOfOwnerByIndex is similar as tokenByIndex. It checks the index value and
returns the position of tokens in ownerTokenIndexes array.

function tokenOfOwnerByIndex(address _owner, uint256 _index)
external view
returns (uint256){

require(_index < balances[_owner]);
return ownerTokenIndexes[_owner][_index];

}

4.3.3.6 transferFrom

function transferFrom(address _from, address _to, uint256
_tokenId) public {

address owner = ownerOf(_tokenId);
require (owner == msg.sender

|| allowance[_tokenId] == msg.sender
|| authorised[owner][msg.sender]

);
require(owner == _from);
require(_to != 0x0);
emit Transfer(_from, _to, _tokenId);
owners[_tokenId] = _to;
balances[_from]--;
balances[_to]++;
if(allowance[_tokenId] != 0x0){
delete allowance[_tokenId];
}
//=== Enumerable Additions ===

(continued)

108 4 Solidity Advanced Topics

uint oldIndex = tokenTokenIndexes[_tokenId];
//If the token isn't the last one in the owner's index
if(oldIndex != ownerTokenIndexes[_from].length - 1){
//Move the old one in the index list

ownerTokenIndexes[_from][oldIndex] =
ownerTokenIndexes[_from][ownerTokenIndexes[_from].length - 1];

//Update the token's reference to its place in the index list
tokenTokenIndexes[ownerTokenIndexes[_from][oldIndex]] =

oldIndex;
}
ownerTokenIndexes[_from].length--;
tokenTokenIndexes[_tokenId] = ownerTokenIndexes[_to].length;
ownerTokenIndexes[_to].push(_tokenId);

}

Please note: before adding token into _to mapping variable, the developers must
reduce ownerTokenIndexes[_from].length. If developer does not do so, it is very
likely that tokenTokenIndexes[_tokenId] is set to an incorrect value.

4.3.3.7 burnToken

burnToken’s program is almost the same as that of transferFrom. The only difference
is that we need to remove the token from tokenIndexes when we add it to
ownerTokenIndexes[_to].

function burnToken(uint256 _tokenId) external{
address owner = ownerOf(_tokenId);
require (owner == msg.sender

|| allowance[_tokenId] == msg.sender
|| authorised[owner][msg.sender]

);
burned[_tokenId] = true;
balances[owner]--;
emit Transfer(owner, 0x0, _tokenId);
//=== Enumerable Additions ===

uint oldIndex = tokenTokenIndexes[_tokenId];
if(oldIndex != ownerTokenIndexes[owner].length - 1){
// Move last token to old position

ownerTokenIndexes[owner][oldIndex] =
ownerTokenIndexes[owner][ownerTokenIndexes[owner].length - 1];

// change token’s reference to new position
tokenTokenIndexes[ownerTokenIndexes[owner][oldIndex]]

= oldIndex;
}

ownerTokenIndexes[owner].length--;

(continued)

4.3 ERC721 Interface 109

delete tokenTokenIndexes[_tokenId];
//This part deals with tokenIndexes
oldIndex = indexTokens[_tokenId];
if(oldIndex != tokenIndexes.length - 1){

// Move last token to old position
tokenIndexes[oldIndex] = tokenIndexes[tokenIndexes.length -

1];
}
tokenIndexes.length--;

}

4.3.3.8 issueTokens

Now let us discuss issueTokens function. No matter what token issue logic does, the
developer must follow the standard workflow.

uint newId = maxId.add(1); //Using SafeMath to prevent overflows.
// Append index of new token to ownerTokenIndexes

tokenTokenIndexes[newId] = ownerTokenIndexes[msg.sender].
length;

// Append tokenId to ownerTokenIndexes
ownerTokenIndexes[creator].push(newId);

// Append token to tokenIndexes
indexTokens[thisId] = tokenIndexes.length;
tokenIndexes.push(thisId);

For newId ¼ maxId + 1, please make sure assigning newId after all new coin
creation process is over:

function issueTokens(uint256 _extraTokens) public{
require(msg.sender == creator);
balances[msg.sender] = balances[msg.sender].add

(_extraTokens);
uint thisId; //We'll reuse this for each iteration below.
for(uint i = 0; i < _extraTokens; i++){

thisId = maxId.add(i).add(1); //SafeMath to be safe!
// Append index of new token to ownerTokenIndexes
tokenTokenIndexes[thisId] = ownerTokenIndexes[creator].

length;
// Append tokenId to ownerTokenIndexes
ownerTokenIndexes[creator].push(thisId);
// Append token to tokenIndexes

(continued)

110 4 Solidity Advanced Topics

indexTokens[thisId] = tokenIndexes.length;
tokenIndexes.push(thisId);
emit Transfer(0x0, creator, thisId);

}
maxId = maxId.add(_extraTokens);

}

4.3.4 ERC165 Protocol

ERC165 has only one function used to check if the contract signature meets the
specified interface signature.

interface ERC165 {
/// @notice Query whether a contract implements some interface or

not
/// @param interfaceID Interface ID specified by ERC-165 standard
/// @dev Interface ID is defined in ERC-165 standard.
/// This function use GAS less than 30,000 gas.
/// @return If contract implements the specified interface, then

return
/// `true`
/// and `interfaceID` is not 0xffffffff, or return `false`
function supportsInterface(bytes4 interfaceID) external view

returns (bool);
}

If specified interface ID (byte4 is supported), return True. In ERC165 standard,
Interface ID is defined as “the XOR of all function selectors in the interface.” Now,
let us use balanceOf function as an example. It is defined as below:

function balanceOf(address _owner) external view returns
(uint256){
//...
};

There are two ways to get function selectors, one is as below:

this.balanceOf.selector

And the other one is:

4.3 ERC721 Interface 111

bytes4(keccak256("balanceOf(address)"))

Both return 0x70a08231. The first one seems neat, but we occasionally will use
the second one to get the function selector when contract overloads the function. It
can be clearly seen that function selector does not care about parameter name,
modifier, mutability, returns, and the function body. It only relates to function
name and parameter types.

Assume that interface consists of three functions: function1(), function2(), and
function3(), then interfaceID is:

interfaceID = this.function1.selector ^ this.function2.selector ^
this.function3.selector;

We must implement ERC165 if we want to implement ERC721. Here, we are
going to demo how to implement ERC165. Since we will use Solidity, we need to
minimize the GAS usage since unnecessary calculation will cost resource and ether.
ERC165 standard requires supportsInterface using <30,000 gas. So, we do not need
to calculate InterfaceID everytime when supportsInterface is called. We can save
interfaceIDs supported into a mapping variable.

Then let us start to code our contract CheckERC165:

contract CheckERC165 is ERC165 {
mapping (bytes4 => bool) internal supportedInterfaces;

supportsInterface function will return a value from mapping variable. Here is the
code:

function supportsInterface(bytes4 interfaceID) external
view returns (bool){
return supportedInterfaces[interfaceID];

}

The following code shows that we save interfaceID into Mapping in constructor:

constructor() public {
supportedInterfaces[this.supportsInterface.selector] = true;
}

Any call to supportsInterface with ERC165 standard interfaceID will return true.

112 4 Solidity Advanced Topics

4.4 Call Between Contracts

There are several methods to call between contracts. A deployed contract has an
address and this address object provides three methods to call other contracts:

• call—Run code in other contracts
• delegatecall—Using storage of calling contract and run code in other contract
• callcode—(discarded)

delegatecall is the revision of callcode which is obsoleted and will be removed in
the future.

4.4.1 Function Call

Calling method in other contracts is through message. Whenever a contract calls
functions in another contract, a message call will be generated. Every call has a
sender, a recipient, a payload, a value, and gas.

Developer can provide gas and ether for call in the way as below:

someAddress.call.gas(1000000).value(1 ether)("register",
"MyName");

gas is the gas paid for the call, address is the address of callee, value is the ether to
be sent and the unit is wei, data is the payload of the call. Please note that value and
gas are optional.

Under the situation of out-of-gas (OOG) exception, at least one 64th of GAS will
be reserved for sender to handle OOG exception and to stop the execution. This
mechanism is trying to avoid bubbling up the exception. Let us have a look at the
following Caller contract:

contract Implementation {
event ImplementationLog(uint256 gas);
function() public payable {
emit ImplementationLog(gasleft());
assert(false);

}
}
contract Caller {
event CallerLog(uint256 gas);
Implementation public implementation;
function Caller() public {

(continued)

4.4 Call Between Contracts 113

implementation = new Implementation();
}
function () public payable { // Fallback Function
emit CallerLog(gasleft());
implementation.call.gas(gasleft()).value(msg.value)(msg.

data);
emit CallerLog(gasleft());

}
}

Caller contract only has a fallback function which redirects all the request to an
Implementation instance. And this instance just runs assert (false) statement for each
request. This will lead to out of GAS. The design is to record the GAS before
Implementation and after Implementation. Let us open a truffle console to see what
happens:

truffle(develop)> compile
truffle(develop)> Caller.new().then(i => caller = i)
truffle(develop)> opts = { gas: 4600000 }
truffle(develop)> caller.sendTransaction(opts).then(r =>
result = r)
truffle(develop)> logs = result.receipt.logs
truffle(develop)> parseInt(logs[0].data) //4578955
truffle(develop)> parseInt(logs[1].data) //71495

As can be seen from above, 71495 is about one 64th of 4578955. And the
example above demonstrates that developer can handle the OOG exception for
inner calls.

Solidity also provides the following opcode, which allows us to use inline
assembly to manage call:

call(g, a, v, in, insize, out, outsize)

g is the GAS provided, a is callee’s address, v is ether to be sent in the unit of wei,
insize bytes of memory starting from in is used to save calldata, out and outsize
memory is used to save return data. The only difference is that the opcode allows
developers to process return data. On contrary, call function only returns 1 or 0.

Please note that using delegatecall may cause security risk since callee can access
and manipulate caller’s storage. Due to the constraint of EVM, call and delegatecall
do not have a return value.

114 4 Solidity Advanced Topics

4.4.2 Dependency Injection

Another method to call methods in other contract is dependency injection: caller
needs to instantiate a callee contract instance first and get callee’s function signature.
Using this method, developer can get the return value of the function call. The
following is an example using the source code in section 2.2.2.1: caller and callee.

• Callee contract
Callee contract has an integer array and provides getter and setter to access the

array. It also defines getValues with one input and one output. Function getValues
is used to demonstrate how to pass parameter and how to return value.

• Caller contract
At the bottom of the caller contract, you can find the Callee interface, which

has the same signature with Callee. This interface can also be defined in a
separated sol file and be imported. In this way, interface and implementation
are separated. The contract provides three functions which all accept the address
as parameter. The address parameter is the address of the deployed Callee
contract. It is possible to initialize caller contract with an address and change it
afterwards. A real scenario is to upgrade deployed contract.

4.4.3 Message Calls

EVM supports a special message call—delegatecall. Solidity also provides an
assembly version of the built-in method. The difference between those two is:
compared to low-level opcode, callee’s code is run in the context of caller, which
means that msg.sender and msg.value do not change when delegatgecall is used.

Let us analyze the following Greeter contract to understand the working mech-
anism of delegatecall.

contract Greeter {
event Hello(address sender, uint256 value);
function hello() public payable {
emit Hello (msg.sender, msg.value);

}
}

Greeter contract only defines a hello function. The only functionality of the
function is to trigger Hello event, and pass msg.value and msg.sender to event as
data. We call this method through Truffle console:

4.4 Call Between Contracts 115

truffle(develop)> compile
truffle(develop)> someone = web3.eth.accounts[0]
truffle(develop)> ETH_2 = new web3.BigNumber(‘2e18’)
truffle(develop)> Greeter.new().then(i => greeter = i)
truffle(develop)> opts = { from: someone, value: ETH_2 }
truffle(develop)> greeter.thanks(opts).then(tx => log =
tx.logs[0])
truffle(develop)> log.event //Hello
truffle(develop)> log.args.sender === someone //true
truffle(develop)> log.args.value.eq(ETH_2) //true

Now, we have a look at Wallet contract: this contract defines a fallback function.
The fallback function call Hello in Greeter contract through delegatecall.

contract Wallet {
Greeter internal greeter;
function Wallet() public {
greeter = new Greeter();

}
function () public payable { // Fallback function
bytes4 methodId = Greeter(0).thanks.selector;
require(greeter.delegatecall(methodId));

}
}

Let us verify the logic in truffle:

truffle(develop)> Wallet.new().then(i => wallet = i)
truffle(develop)> wallet.sendTransaction(opts).then(r => tx = r)
truffle(develop)> logs = tx.receipt.logs
truffle(develop)> SolidityEvent = require(‘web3/lib/web3/event.
js’)
truffle(develop)> Thanks = Object.values(Greeter.events)[0]
truffle(develop)> event = new SolidityEvent(null, Thanks, 0)
truffle(develop)> log = event.decode(logs[0])
truffle(develop)> log.event // Hello
truffle(develop)> log.args.sender === someone // true
truffle(develop)> log.args.value.eq(ETH_2) // true

As can be seen from the example above, delegatecall function keeps the msg.
value and msg.sender of calling contract. This means that a contract can dynamically
load code of another contract. Callee contract’s code works in the context of calling
contract, including storage, address, balance, etc. We have a look at following
Calculator contract to see how to use delegatecall to access storage variables.

116 4 Solidity Advanced Topics

// Base storage contract
contract ResultStorage {

uint256 public result;
}
// Calculator contract derived from ResultStorage
contract Calculator is ResultStorage {

Product internal product; // Product contract
Addition internal addition; // Addition contract
function Calculator() public {

product = new Product();
addition = new Addition();

}
// Addition proxy to Addition contract
function add(uint256 x) public {

bytes4 methodId = Addition(0).calculate.selector;
require(addition.delegatecall(methodId, x));

}
// Multiple proxy to Product contract
function mul(uint256 x) public {

bytes4 methodId = Product(0).calculate.selector;
require(product.delegatecall(methodId, x));

}
}
// Addition contract derived from ResultStorage
contract Addition is ResultStorage {

function calculate(uint256 x) public returns (uint256) {
uint256 temp = result + x;
assert(temp >= result);
result = temp;
return result;

}
}
// Multiply contract derived from ResultStorage
contract Product is ResultStorage {

function calculate(uint256 x) public returns (uint256) {
if (x == 0) result = 0;
else {
uint256 temp = result * x;
assert(temp / result == x);
result = temp;

}
return result;

}
}

Calculator contract has two functions: add and product. Calculator contract does
not know how to do addition or multiplication; It is only a proxy redirecting addition
or multiplication to addition and product contract. But all contracts share the same
storage variables which keep the calculation result. Let us verify through Truffle:

4.4 Call Between Contracts 117

truffle(develop)> Calculator.new().then(i => calculator = i)
truffle(develop)> calculator.addition().then(a =>
additionAddress=a)
truffle(develop)> addition = Addition.at(additionAddress)
truffle(develop)> calculator.product().then(a => productAddress
= a)
truffle(develop)> product = Product.at(productAddress)
truffle(develop)> calculator.add(5)
truffle(develop)> calculator.result().then(r => r.toString()) //
5
truffle(develop)> addition.result().then(r => r.toString()) // 0
truffle(develop)> product.result().then(r => r.toString()) // 0
truffle(develop)> calculator.mul(2)
truffle(develop)> calculator.result().then(r => r.toString()) //
10
truffle(develop)> addition.result().then(r => r.toString()) // 0
truffle(develop)> product.result().then(r => r.toString()) // 0

Above testing results show that through delegatecall, we are actually working on
the storage of Calculator contract while code is stored in Addition and Product
contract.

We also have delegatecall opcode in assembly:

contract Implementation {
event ImplementationLog(uint256 gas);
function() public payable {
emit ImplementationLog(gasleft());
assert(false);

}
}
// Proxy contract
contract Delegator {
event DelegatorLog(uint256 gas);
Implementation public implementation;

// Contract keeping Implementation object
function Delegator() public {
implementation = new Implementation();

}
function () public payable {
emit DelegatorLog(gasleft());
address _impl = implementation;

assembly {
let ptr := mload(0x40) // Get free memory pointer
calldatacopy(ptr, 0, calldatasize) // Copy calldata to free

memory pointer
// Call contract at address _impl through delegatecall

(continued)

118 4 Solidity Advanced Topics

let result := delegatecall(gas, _impl, ptr, calldatasize, 0, 0)
}

emit DelegatorLog(gasleft());
}

}

Let us emphasize that through delegatecall, callee’s code can read/write the
storage of Caller contract.

4.4.4 Return Value of Contract Call

In this section, we are going to introduce how to get the return value of the call
between different contract methods. Assume that we already deploy a simple
contract—“Deployed,” and it has only one function allowing users to set/update
the member variable of the “Deployed” contract.

pragma solidity ^0.4.18;
contract Deployed {

uint public a = 1;

function setA(uint _a) public returns (uint) {
a = _a;
return a;

}
}

Then, we deploy another contract—“Existing” which plans to update the variable
“a” in “Deployed” contract.

pragma solidity ^0.4.18;
contract Deployed {

function setA(uint) public returns (uint) {}
function a() public pure returns (uint) {}

}
contract Existing {

Deployed dc;
function Existing(address _t) public {

dc = Deployed(_t);
}
function getA() public view returns (uint result) {

return dc.a();

(continued)

4.4 Call Between Contracts 119

}
function setA(uint _val) public returns (uint result) {

dc.setA(_val);
return _val;

}
}

Here we only need the function signature which is required by ABI standard.
During the initialization of “Existing” contract, “Existing” contract saves the address
of “Deployed” contract and it contains two functions to call contract “Deployed”;
SetA and GetA. However, if we do not have the ABI of deployed contract, do we still
can invoke setA function in “Existing” contract? The answer is yes.

pragma solidity ^0.4.18;
contract ExistingWithoutABI {

address dc;
function ExistingWithoutABI(address _t) public {

dc = _t;
}
function setA_Signature(uint _val) public returns(bool

success){
require(dc.call(bytes4(keccak256("setA(uint256)")),

_val));
return true;

}
}

Function signature is 4 bytes long and the formula to calculating it is:

bytes4(keccak256(“setA(uint256)”))

When we use the call method in setA method, we can pass a value since Call (and
delegatecall) method can only pass value and cannot get a return value. So, we are
not sure if setA is working properly unless we go to check the “Deployed” contract.
As an alternative, we can use the Solidity inline assembly to get the return value
of setA.

pragma solidity ^0.4.18;
contract ExistingWithoutABI {

address dc;
function ExistingWithoutABI(address _t) public {

dc = _t;
}

(continued)

120 4 Solidity Advanced Topics

function setA_ASM(uint _val) public returns (uint answer) {
// Create function signature
bytes4 sig = bytes4(keccak256("setA(uint256)"));
assembly {

// Get free memory pointer
let ptr := mload(0x40)
// Put function signature to free memory pointer
mstore(ptr,sig)
// Append parameters to function signature
mstore(add(ptr,0x04), _val)
// Invoke call opcode
let result := call(

15000, // gas limit
sload(dc_slot), // Target contract address
0, // do not send ether
ptr, // input at ptr
0x24, // the size of input is 36 bytes = 4 byte function

signature + 32 bytes parameters
ptr, // Return value at ptr
0x20) // size of return value

if eq(result, 0) {
revert(0, 0)

}
answer := mload(ptr) // put the value at free memory pointer

into answer
mstore(0x40,add(ptr,0x24)) // modify free memory pointer

}
}

}

“assembly” keyword indicates that the code enclosed in curly bracket is Solidity
inline assembly. The code gets the free memory pointer from address 0 � 40. Then,
we pass the function signature and parameters to free memory pointer. Since
function signature is 4 bytes long and the parameter is aligned to 32 bytes, there
are 36 bytes in totally. As the next step, we use “call” opcode and return value will be
set at the place of free memory pointer. In the example above, return value is
Boolean, and could be 0 or 1. If the return value is 0, then revert.

4.5 Basic Algorithms

In smart contract programming, we may use some traditional algorithms, such as
sorting (bubble sorting, binary search, etc.), tree (Merkle tree), graph, etc. Since
operations in contract cost GAS, we need to consider about GAS usage in smart
contract programming, which is different from implementation in Java, C++, or
Python.

First, let us summarize operations which cost GAS and do not cost GAS:

4.5 Basic Algorithms 121

Operations which do not cost GAS:

- Read state variables
- Read <address>.balance or this.balance
- Read block variables tx, or sg
- Call any pure function
- Use "read" opcodes in inline assembly

Operations which cost GAS:

- send ethers
- Create contracts
- change state variables
- Send Event
- Call any non-pure or non-view function
- selfdestruct
- low-level calls
- Use "write" opcodes in inline assembly

We are not going to introduce all basic algorithms such as list, tree, and graph. We
only use quicksort algorithm as an example to showcase different consideration in
Solidity programming. First, quicksort is a famous sorting algorithm and it accepts
an array as input. It selects a pivot based on some rule (random or medium). All
elements smaller than the pivot are swapped to its left and all elements bigger than
the pivot are swapped to its right. Then, recursively call function to the left array and
right array until the array contains only one or zero element. Following pseudo-code
shows the logic6:

/* low --> Start of Array, high -->End of Array */
quickSort(arr[], low, high)
{

if (low < high)
{

/* pi is pivot, and arr[pi] is treated as right array */
pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // recursive sort for elements
before pi

quickSort(arr, pi + 1, high); // recursive sort for elements
after pi

}
}

6https://www.geeksforgeeks.org/quick-sort

122 4 Solidity Advanced Topics

https://www.geeksforgeeks.org/quick-sort

Quick-sort example:

Now, we have the keyword—swap. In the traditional programming language, it is
easy to swap between two elements through declaration of a temporary variable (for
example: temp variable below). Sample code is like below:

if (arr[j] <= pivot) {
i++;
// swap between arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

However, since creating temp variables in Solidity still cost GAS, we need to
implement element swap in minimum cost. Here, we just introduce a simple
solution: XOR swap. The pseudo logic for element swap between arr[i] and arr
[j] becomes:

// Solidity (XOR swap)
arr[uint(i)] ^= arr[uint(j)];
arr[uint(j)] ^= arr[uint(i)];
arr[uint(i)] ^= arr[uint(j)];

And we can continue to improve the code above. Since method call in Solidity
still cost GAS, we can put the body of Partition function directly into Sort function to
save one method call to Partition(). And there are still a lot to improve. For example:
remove force type cast, save extra if condition, etc.

4.5 Basic Algorithms 123

Following is a neat version of Quick-sort.

pragma solidity ^0.4.18;
contract QuickSort {

function sort(uint[] data) public constant returns(uint[]) {
quickSort(data, int(0), int(data.length - 1));// Recursive

call
return data;

}
function quickSort(uint[] memory arr, int left, int right)

internal{
int i = left;
int j = right;
if(i==j) return;
uint pivot = arr[uint(left + (right - left) / 2)];// pick Pivot点
while (i <= j) {

while (arr[uint(i)] < pivot) i++;
while (pivot < arr[uint(j)]) j--;
if (i <= j) {

(arr[uint(i)], arr[uint(j)]) = (arr[uint(j)], arr[uint
(i)]);

i++;
j--;

}
}
if (left < j)

quickSort(arr, left, j); // Recursive call of left part
if (i < right)

quickSort(arr, i, right); // Recursive call of right part
}

}

4.6 Using Golang to Interact with Contract

In Chap. 2, we already showed how to deploy and debug smart contact by using
Remix, JavaScript, or Truffle framework. The benefit of using existing tools or
framework is fast and efficient. The downside is that we may ignore many details.
Most programmers prefer to go through the whole procedure manually and it helps
programmers to dig out more technical details and understand basic principles. In
this section, we are going to deploy a contract based on solc + GO7.

7https://hackernoon.com/a-step-by-step-guide-to-testing-and-deploying-ethereum-smart-contracts-
in-go-9fc34b178d78

124 4 Solidity Advanced Topics

https://hackernoon.com/a-step-by-step-guide-to-testing-and-deploying-ethereum-smart-contracts-in-go-9fc34b178d78
https://hackernoon.com/a-step-by-step-guide-to-testing-and-deploying-ethereum-smart-contracts-in-go-9fc34b178d78

4.6.1 Contract Source

USDT is considered as stable coin in crypto currency world. Traditional USDT is
running on the omni layer on top of Bitcoin network. Now, USDT has an ERC20
version at https://etherscan.io/address/
0xdac17f958d2ee523a2206206994597c13d831ec7. Most of crypto exchanges sup-
port ERC20 version of USDT. USDT ERC20 contract source code, ABI, and
bytecode can be downloaded at https://etherscan.io/address/
0xdac17f958d2ee523a2206206994597c13d831ec7#code as below:

We copy and paste the source code into a local file—usdterc20.sol. And we add a
new member variable—message and a method setMessage() to main contract—
TetherToken:

contract TetherToken is Pausable, StandardToken, BlackList {
string public name;
string public symbol;
uint public decimals;
address public upgradedAddress;
bool public deprecated;
string public message = "This is a test";

. . .

(continued)

4.6 Using Golang to Interact with Contract 125

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

// setter function
function setMessage(string newMessage) public {

message = newMessage; }
. . .

}

In the following sections, we are going to show how to use Golang to deploy the
contract above and how to interact with the deployed contract.

4.6.2 Project Creation

We are going to develop a simple USDT similar contract. First, let us to create the
directory structure:

Navigate to your Go src directory. Mine looks like:
$GOPATH/src/demousdt
$ cd $GOPATH/src/demousdt
$ mkdir -p demousdt/ERC20
$ touch main.go
$ touch ERC20/connector.go
$ tree demousdt/
demousdt/
├── ERC20

│ ├── connector.go
│ ├── usdterc20_test.go

│ └── usdterc20.sol
├── update.go
└── main.go

Project root directory is demousdt. We create an ERC20 directory under the root
directory, which contains all Solidity contract related source code. We have con-
nector.go which is a wrapper of all interaction with contract. There is also a main.go
to interact with the contract.

4.6.3 Using Golang to Interact with Contract

Next, we need to access and deploy the contract to Ethereum in our GO program
which can also interact with the contract. Geth provides a simple code generation
tool which can transfer a Solidity contract into a type-safe go library. And we can
import the go library and use it directly. The tool is abigen. Let us go to inbox/
contracts directory and run:

126 4 Solidity Advanced Topics

$
$abigen --abi usdterc20.abi --pkg ERC20 --type usdterc20 --out
usdterc20.go --bin usdterc20.bin

$ tree demousdt
demousdt
└── ERC20

├── usdterc20.sol

├── usdterc20.abi

├── usdterc20.bin └── usdterc20.go

The command above generates usdterc20.go for usdterc20.sol automatically.
usdterc20.go includes the link to usdterc20 smart contract. And we can start to test
from now on.

4.6.4 Local Test

Before deploying the contract, we need to confirm it works fine on our local. Geth
provides a tool to simulate blockchain. We will show how to use this tool below.

package ERC20
import (

"testing"
"github.com/ethereum/go-ethereum/accounts/abi/bind/

backends"
"github.com/ethereum/go-ethereum/accounts/abi/bind"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/core"
"math/big"

)

// Test USDTERC20 contract gets deployed correctly
func TestDeployUSDTERC20(t *testing.T) {

//Setup simulated block chain
key, _ := crypto.GenerateKey()
auth := bind.NewKeyedTransactor(key)
alloc := make(core.GenesisAlloc)
alloc[auth.From] = core.GenesisAccount{Balance: big.NewInt

(1000000000)}
blockchain := backends.NewSimulatedBackend

(alloc,100000000000)

(continued)

4.6 Using Golang to Interact with Contract 127

//Deploy contract
var total, _ = new(big.Int).SetString

("1000000000000000000000000000", 10)
address, _, _, err := DeployUSDTERC20(auth, blockchain, total,

"usdt erc20", "usdterc201", big.NewInt(18))

// commit all pending transactions
blockchain.Commit()

if err != nil {
t.Fatalf("Failed to deploy the USDT ERC20 contract: %v", err)

}
if len(address.Bytes()) == 0 {

t.Error("Expected a valid deployment address. Received empty
address byte array instead")

}
}

TestDeployUSDTERC20 function first calls crypto.GenerateKey to generate a
private key which will be used to develop transaction signature function used to
simulate authorization transaction on blockchain. We create the function signature
through bind.NewKeyedTransactor. And then we use this address to create genesis
block which includes some account with some initial amount. This is implemented
by calling make (core.GenesisAlloc and core.GenesisAccount). And at last, we start
mining, showing all transactions waiting for process and verifying inbox contract
has been deployed to a valid address.

Enter demousdt\ERC20 directory, and run go test command to check if our
deployment works properly.

$ go test -v
=== RUN TestDeployUSDTERC20
--- PASS: TestDeployUSDTERC20 (0.01s)
PASS
ok demousdt/ERC20 0.335s

Next, test if our deployed contract contains correct initialization info.

package contracts
import (

"testing"
"github.com/ethereum/go-ethereum/accounts/abi/bind/

backends"
"github.com/ethereum/go-ethereum/accounts/abi/bind"

(continued)

128 4 Solidity Advanced Topics

"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/core"
"math/big"

)
//Test initial message gets set up correctly
func TestGetMessage(t *testing.T) {

//Setup simulated block chain
key, _ := crypto.GenerateKey()
auth := bind.NewKeyedTransactor(key)
alloc := make(core.GenesisAlloc)
alloc[auth.From] = core.GenesisAccount{Balance: big.NewInt

(1000000000)}
blockchain := backends.NewSimulatedBackend

(alloc,100000000000)

//Deploy contract
var total, _ = new(big.Int).SetString

("1000000000000000000000000000", 10)
_, _, contract, _ :=DeployUSDTERC20(auth, blockchain, total,

"usdt erc20", "usdterc201", big.NewInt(18))
// commit all pending transactions
blockchain.Commit()
if got, _ := contract.Message(nil); got != "This is a test" {

t.Errorf("Expected message to be: Hello World. Go: %s", got)
}

}

Similar to TestDeployUSDTERC20 above, TestGetMessage function first sets up
the environment and then calls DeployUSDTERC20which is generated automati-
cally. DeployUSDTERC20function returns a pointer to a deployed inbox instance.
We can use this pointer to interact with the deployed USDTERC20 contract. In our
test cases, we will query and validate the message in contract instance.

Under demousdt\ERC20, we run go test and confirm that all test cases pass.

$ go test -v
=== RUN TestDeployUSDTERC20
--- PASS: TestDeployUSDTERC20 (0.01s)
=== RUN TestGetMessage
--- PASS: TestGetMessage (0.01s)
PASS
ok demousdt/ERC20 0.329s

Last, we are going to test and update message property in the deployed contract.

4.6 Using Golang to Interact with Contract 129

package contracts
import (

"testing"
"github.com/ethereum/go-ethereum/accounts/abi/bind/

backends"
"github.com/ethereum/go-ethereum/accounts/abi/bind"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/core"
"math/big"

)
// Test message gets updated correctly
func TestSetMessage(t *testing.T) {

//Setup simulated blockchain
key, _ := crypto.GenerateKey()
auth := bind.NewKeyedTransactor(key)
alloc := make(core.GenesisAlloc)
alloc[auth.From] = core.GenesisAccount{Balance: big.NewInt

(1000000000)}
blockchain := backends.NewSimulatedBackend

(alloc,100000000000)

//Deploy contract
var total, _ = new(big.Int).SetString

("1000000000000000000000000000", 10)
_, _, contract, _ :=DeployUSDTERC20(auth, blockchain, total,

"usdt erc20", "usdterc201", big.NewInt(18))

// commit all pending transactions
blockchain.Commit()
contract.SetMessage(&bind.TransactOpts{

From:auth.From,
Signer:auth.Signer,
Value: nil,

}, "Hello World")
blockchain.Commit()
if got, _ := contract.Message(nil); got != "Hello World" {

t.Errorf("Expected message to be: Hello World. Go: %s", got)
}

}

TestSetMessage function first sets up the environment and then calls
DeployUSDTERC20 function to get deployed instance of Inbox Contract. We use
this pointer to call SetMessage function to update the property. And this actually
creates a new transaction. At last, we pass a TransactOpts struct pointer which
contains transaction authorization.

We run “go test” to make sure that all test cases pass.

130 4 Solidity Advanced Topics

$ go test -v
=== RUN TestDeployUSDTERC20
--- PASS: TestDeployUSDTERC20 (0.01s)
=== RUN TestGetMessage
--- PASS: TestGetMessage (0.01s)
=== RUN TestSetMessage
--- PASS: TestSetMessage (0.01s)
PASS
ok demousdt/ERC20 0.353s

After our contract passed local test, we are ready to deploy it to Ethereum
blockchain. We need to use Metamask to create a new account and deposit some
money into this account.

4.6.5 Connect to an Ethereum Node

Wemay need to run geth on our local, which is resource-costly and time-intensive. A
better solution is to connect to a third-party node service platform, such as infura. We
can get a free infura account. Once the registration is completed, infura will connect
to different nodes in a different environment, such as mainnet, rinkeby, ropsten, etc.
In connector.go, we have code demonstrating how to connect to Ethereum Node
through infura.

func NewConnecter() *Connecter {
// Dial support multiple ways of connection such as ws、http、ipc
conn, err :=

ethclient.Dial("https://ropsten.infura.io/v3/
fdda941e249941418aeb27b0323d03c6")

if err != nil {
panic(err)

}
coin, err := NewUSDTERC20(CoinAddr, conn)
if err != nil {

panic(err)
}
return &Connecter{

ctx: context.Background(),
conn: conn,
coin: coin,

}
}

Please note that your infura URL will be different from the infura URL above.

4.6 Using Golang to Interact with Contract 131

https://infura.io/

4.6.6 Create JSON Key for Our Account

In order to interact with contracts on Ethereum network, such as Rinkeby testnet, we
need JSON key file created for Metamask account. We use Metamask account to
deploy and interact with Inbox contract. In Metamask, we click “export private key”
to export private key to a file and then load it into geth.

geth account import path/to/private/key/file

The command above creates an encrypted JSON key and we use it to interact with
contract.

4.6.7 Validation

Now, let us to deploy the contract in main.go:

package main
import (

"demousdt/ERC20"
"github.com/ethereum/go-ethereum/common"
"log"
"math/big"

)

var (
srcAddress = common.HexToAddress

("0xA4e71aEeAdaA01FD0f15455f67D7d2CAD32EbFcA") // Keystore

)

func main() {
keyin := "{\"address\":

\"a4e71aeeadaa01fd0f15455f67d7d2cad32ebfca\",\"crypto\":
{\"cipher\":\"aes-128-ctr\",\"ciphertext\":
\"7573755cb636a8712c595b63a69e69c968ff7be194e8757b1
122584a63ad2457\",\"cipherparams\":{\"iv\":
\"2afb66d1c584804b8f3265fff3b220cb\"},\"kdf\":\"scrypt\",
\"kdfparams\":{\"dklen\":32,\"n\":262144,\"p\":1,\"r\":8,
\"salt\":\"bad691204ff97a29742329338a56c91df858ee383733d
1357e95f7b4736ea5a6\"},\"mac\":
\"061dae9ec6409181dea894afd52c5
acf779e320a970159a91ab334a54a55c4d1\"},\"id\":\"d4a01c73-

(continued)

132 4 Solidity Advanced Topics

baeb-44b8-9489-2c6a7df5aa45\",\"version\":3}"
srcTransactOpt := ERC20.AuthAccount(keyin, "geth123")

s:=ERC20.NewConnecterWithDeploy(srcTransactOpt)

// s.WatchTransferAndMint()
log.Printf("Contract Name = %s, BlockNo= %d, BalanceofETH=%d,

BalanceofCoin=%d\n", s.ContractName(), s.BlockNumber(), s.
BalanceOfEth(srcAddress), s.BalanceOfCoin(srcAddress))
}

In ERC20/connector.go, we plan to deploy the contract with initial supply of
1000000 coins with decimal 18.

// NewConnecterWithDeploy deploy contract and create connecter
func NewConnecterWithDeploy(ownerAuth *bind.TransactOpts)
*Connecter {

conn, err :=
ethclient.Dial("https://ropsten.infura.io/v3/
fdda941e249941418aeb27b0323d03c6")

if err != nil {
panic(err)

}

var total, _ = new(big.Int).SetString
("1000000000000000000000000000", 10)

_, tx, coin, err := DeployUSDTERC20(ownerAuth, conn, total,
"usdt erc20", "usdterc201", big.NewInt(18))

if err != nil {
panic(err)

}
ctx := context.Background()
CoinAddr, err = bind.WaitDeployed(ctx, conn, tx)
if err != nil {

panic(err)
}
CoinHash = CoinAddr.Hash()
return &Connecter{

ctx: ctx,
conn: conn,
coin: coin,

}
}

We use ethclient.Dial to connect Ropsten testnet through infura. And in main.go,
we use ERC20.AuthAccount(keyin, "geth123") method to create an approved trader
from key JSON. We could use “geth account list” command to find the location of

4.6 Using Golang to Interact with Contract 133

JSON key file. We generated password derived from the output of command “geth
account import.”

$ go run main.go

It can take some time for contract being mined into block. We can check the status
through blockchain explorer at: https://ropsten.etherscan.io/address/[contract
address]. Our contract is deployed at https://ropsten.etherscan.io/address/
0xc4dbf323c3c2ae821e4e02afe5a0542c78423e8b.

Once transactions are mined into block, we can interact with the deployed
contract through contract address. As can be seen from main.go, we use member
functions in connector.go to interact with the contract.

package main
import (

"demousdt/ERC20"
"github.com/ethereum/go-ethereum/common"
"log"
"math/big"

)
func main(){

. . .
s:=ERC20.NewConnecterWithDeploy(srcTransactOpt)

log.Printf("Contract Name = %s, BlockNo= %d, BalanceofETH=%d,
BalanceofCoin=%d\n", s.ContractName(), s.BlockNumber(), s.
BalanceOfEth(srcAddress), s.BalanceOfCoin(srcAddress))
. . .
}

As can be seen from the code above, we use ethclient.Dial to connect Ropsten
testnet through infura URL and return connector struct containing the usdterc20
instance which is bound to the deployed contract address. Last, we access properties
of contract (contract name, balance of ETH, and balance of USDTERC20) and print
them. Here is the output:

2019/12/12 15:12:13 Contract Name = usdt erc20, BlockNo= 6954046,
BalanceofETH=288743089000000000,
BalanceofCoin=1000000000000000000000000000

Next, remember that we add a new member variable—message and a new setter
function—setMessage and message variable is initialized to value “this is a test.” In
update.go, we change the value of message in USDTERC20 contract.

134 4 Solidity Advanced Topics

https://ropsten.etherscan.io/address/
https://ropsten.etherscan.io/address/0xc4dbf323c3c2ae821e4e02afe5a0542c78423e8b
https://ropsten.etherscan.io/address/0xc4dbf323c3c2ae821e4e02afe5a0542c78423e8b

package main
import (

"demousdt/ERC20"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethclient"
"log"
"time"

)

var (
CoinAddr = common.HexToAddress

("0xc4dbf323c3c2ae821e4e02afe5a0542c78423e8b") // USDT

// CoinHash superCoin 合约地址Hash
CoinHash = CoinAddr.Hash()

)

func main() {
keyin := "{\"address\":

\"a4e71aeeadaa01fd0f15455f67d7d2cad32ebfca\",\"crypto\":
{\"cipher\":\"aes-128-ctr\",\"ciphertext\":
\"7573755cb636a8712c595b63a69e69c968ff7be194
e8757b1122584a63ad2457\",\"cipherparams\":{\"iv\":
\"2afb66d1c584804b8f3265fff3b220cb\"},\"kdf\":\"scrypt\",
\"kdfparams\":{\"dklen\":32,\"n\":262144,\"p\":1,\"r\":8,
\"salt\":\"bad691204ff97a29742329338a56c91df858ee383
733d1357e95f7b4736ea5a6\"},\"mac\":
\"061dae9ec6409181dea894afd52c5acf779
e320a970159a91ab334a54a54b4d2\"},\"id\":\"d4a01c73-baeb-44b8-
9489-2c6a7df5aa45\",\"version\":3}"

srcTransactOpt := ERC20.AuthAccount(keyin, "geth123")

conn, err :=
ethclient.Dial("https://ropsten.infura.io/v3/
fdda941e249941418aeb27b0323d03c6")

if err != nil {
panic(err)

}
coin, err := ERC20.NewUSDTERC20(CoinAddr, conn)
if err != nil {

panic(err)
}

str,_ := coin.Message(nil)
log.Printf("Before : message = %s,\n", str)
coin.SetMessage(srcTransactOpt,"USDT ERC20")

}

The code above shows that we use SetMessage to modify contract property by
passing a TransactOpts struct which contains authorization data. Once the

4.6 Using Golang to Interact with Contract 135

transaction is mined into some blocks, we can use contract.Message to get modified
message property.

Now, we know the key protocols behind ICO(ERC20) and Cryptokitty
(ERC721). Also, we learned 3 methods for cross contract calls and their pros and
cons. And to dig out more technical details, we studied how to interact with smart
contract by using Golang. In the following sections, we will dive deep into smart
contract programming in Solidity.

136 4 Solidity Advanced Topics

Part III
Solidity Advanced Features

Chapter 5
Application Binary Interface (ABI)

When we finish the Solidity coding and compiling successfully, the next step is to let
EVM execute the bytecode generated. From EVM point of view, transaction calldata
is just a byte array and we need to understand how EVM interprets the byte array. If
all the programming language based on EVM use the same standard to interpret
input data, then it will be easier for them to interact with each other. This is why we
need Application Binary Interface (ABI). Just as Google Protocol Buffer, Applica-
tion Binary Interface (ABI) is a general-purposed data exchange format specified by
Ethereum. ABI is applied to the interaction between external call and contract.

5.1 Memory Structure

When a contract starts to run, the EVM memory structure is shown below:

0x00 - 0x3f: Space reserved for Hash
0x40 - 0x5f: Current Memory Size (eg Free Memory Pointer)
0x60 - 0x7f: Storage slot with initialized value 0

5.2 Function Selector

The first 4 bytes of calldata are function selector. Parameter starts from 5th byte.
Here is the formula to generate function selector:

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_5&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_5#DOI

bytes4(keccak256("functionname (parameter)"))

For example, for the function like below:

function add(uint256 _a, uint256 _b) public view returns (uint256
result)

The calculation of function selector is

bytes4(keccak256("add(uint256,uint256)"))

5.3 Type Definition

The following is coming from the official documentation of Solidity. Solidity defines
the following types.1

Name Description Example

uint<M> M bits unsigned int, 0 < M <¼ 256, M % 8 ¼¼ 0 uint32, uint8,
uint256

int<M> Mbits signed integer(complementary coded)
0 < M <¼ 256, M % 8 ¼¼ 0

int8, int256

Address Equals to uint160

uint, int Equals to uint256, int256

bool Equals to uint8, possible values are O or 1

fixed<M>x<N> Mbits signed fix point 8 <¼ M <¼ 256, M % 8 ¼¼0,
0 < N <¼ 80, v as v / (10 ** N)

fixed128x18

ufixed<M>x<N> Variant of unsigned fixed<M>x<N> ufixed128x18

fixed, ufixed Equals to fixed128x18, ufixed128x18

bytes<M> M bytes binary, 0 < M <¼ 32

function Address + function selector(4 bytes), encode equals to
bytes24

<type>[M] Fixed-
length array

Fixed-length array with M elements of specified type
M >¼ 0

bytes Dynamic byte array

string Dynamic UTF-8 coded Unicode string

<type>[] Dynamic array of specified type

(T1,T2,...,Tn) Tuple of type T1, . . ., Tn, n >¼ 0 Tuple can be nested, it is
possible to have tuple array or 0 tuple

1https://solidity.readthedocs.io/en/develop/abi-spec.html#abi-json.

140 5 Application Binary Interface (ABI)

https://solidity.readthedocs.io/en/develop/abi-spec.html#abi-json

Non-fixed types include the following types:

• bytes
• string
• T[] T can be any type
• T[k] Any dynamic type T and any k >¼ 0
• (T1,...,Tk) Ti is dynamic type and 1 <¼ i <¼ k

Any other types are called fixed-size type.

5.4 Data Presentation in EVM

First, we need to understand how EVM presents data types in Solidity and how EVM
stores data and its assembly implementation. On top of it, we can better understand
the working mechanism of Solidity and how to estimate GAS. For example:

• sstore costs about 20000 gas, which is about 5000 times of that of basic arithmetic
opcode

• sload costs about 200 gas, which is about 100 times of that of basic arithmetic
opcode

Each contract has 2256 storage slots. And 2256 is an unfathomably large number. It
is approximately 1077 in decimal. For comparison, the visible universe is estimated
to contain 10e80 atoms.

5.4.1 Presentation of Fixed-Length Data Type

In this section, we introduce fixed-length types, such as basic types, struct, fixed-
length array, etc.

5.4.1.1 Zero Value

Let us have a look at a small example below:

pragma solidity ^0.4.24;
contract vartest {

uint256 a;
uint256 b;
uint256 c;

(continued)

5.4 Data Presentation in EVM 141

function C() {
c = 0x519bef;

}
}

A declaration of a storage variable does not incur any cost since there is no need
for initialization. Solidity only keeps the space for the storage variable, and you only
need to pay when you store values into it. So, for the example above, storage
variables a and b do not cost any GAS because a and b are not used yet. You only
need to pay for storage slot 0x2 which is the address of variable c.

5.4.1.2 Presentation of Struct

The following is our first complex data type—a struct with three member fields:

pragma solidity ^0.4.24;
contract C {

struct objstruct{
uint256 a;
uint256 b;
uint256 c;

}
objstruct t;
function C() {

t.c = 0x519bef;
}

}

Just as the last Sect. 5.4.1.1, t.a is saved at storage slot 0x0. Since t.a is not used
yet, we do not need to pay for t.a. And we need to pay for t.c since we assign some
value to t.c in function C().

5.4.1.3 Fixed-Length Array

Here is a small example of fixed-length array:

pragma solidity ^0.4.24;
contract arraytest{

uint256[3] numbers;
function C() {

numbers[2] = 0x519bef;
}

}

142 5 Application Binary Interface (ABI)

The rule for fixed-length array is the same as what is stated in the previous
sections. In the example above, although a three-elements array variable is declared,
we only need to pay for the assignment to the third element.

5.4.2 Presentation of Dynamic Data Type

Solidity also provides some dynamic types which can be expanded with data growth.
There are mainly three dynamic types:

• Mappings: mapping(bytes32 ¼> uint256), mapping(address ¼> string) etc.
• Arrays: []uint256, []byte etc.
• Byte arrays: string, bytes

5.4.2.1 Mapping

The following is a simple example of Mapping:

pragma solidity ^0.4.24;
contract mappingtest {

mapping(uint256 => uint256) mapitems;
constructor() public {

mapitems[0x5f0f9b3e] = 0x3f;
}

}

Let us use Solmap to disassemble the contract above and we get the following
code. Please note: we can also use remix to disassemble.

20 {0x60} [c30] PUSH1 0x3f (dec 63)
21 {0x7f} [c32] PUSH32

0xc9d1063eb535bdb1d90a915b0e1c2b6e558bf2e7fd754
dd7e8fe6a4c4d94e3ce (dec 9.128419670285364e+76)
22 {0x55} [c65] SSTORE

The SSTORE opcode above is to save 0x3f into slot
0xc9d1063eb535bdb1d90a915b0e1c2b6e558bf2e7fd754dd7e8fe6a4c4d94e3ce. But
what does 0xc9d1063eb535bdb1d90a915b0e1c2b6e558bf2e7fd754dd7e8fe6a4c4d94e3ce
mean?

The calculation formula for Map address is like below:

keccak256(bytes32(key) + bytes32(position))

5.4 Data Presentation in EVM 143

In order to verify the formula above in Pyethereum, we need to input two helper
functions first.

>>> def bytes32(i):
... return binascii.unhexlify('%064x' % i)
...
>>> def keccak256(x):
... return sha3.keccak_256(x).hexdigest()

Then, we type the formula with appropriate parameters (Fig. 5.1).
As can be seen, the result is the address for Map item with key equal to

0x5f0f9b3e. 0x5f0f9b3e is the key and 0 is the number of the storage slot. Let us
see what the code is like if the map is big:

pragma solidity ^0.4.24;
contract mappingbig {

mapping(uint256 => Tuple) maptuples;
struct Tuple {

uint256 a;
uint256 b;
uint256 c;

}
constructor () public {

maptuples[0x1].a = 0x1A;
maptuples[0x1].b = 0x1B;
maptuples[0x1].c = 0x1C;

}
}

Using Solmap, we get the assembly code:

20 {0x60} [c27] PUSH1 0x1a (dec 26)
21 {0x7f} [c29] PUSH32

0xada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a
59e7d (dec 7.854166079704491e+76)

22 {0x55} [c62] SSTORE
23 {0x60} [c63] PUSH1 0x1b (dec 27)

(continued)

Fig. 5.1 map address calculation output

144 5 Application Binary Interface (ABI)

24 {0x7f} [c65] PUSH32
0xada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a
59e7e (dec 7.854166079704491e+76)

25 {0x55} [c98] SSTORE
26 {0x60} [c99] PUSH1 0x1c (dec 28)
27 {0x7f} [c101] PUSH32

0xada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a
59e7f (dec 7.854166079704491e+76)

28 {0x55} [c134] SSTORE

As can be seen, for the <key,value> pair in mapping, if the value is larger than
32 bytes, storage address will increase in turn by 32 bytes. And the compiler will not
optimize the code by packing.

5.4.2.2 Dynamic Array

In Solidity, array is the upgraded version of mapping. And array costs more GAS
than mapping. All the elements in array will be saved in order in storage slots:

0x3ddf...e001
0x3ddf...e002
0x3ddf...e003
0x3ddf...e004

Access to slots is exactly the same as querying key-value pair in the database.
There are not many differences between accessing an array element and accessing a
mapping item. The main difference is that array access is much more complex and
much stricter:

• Length – the length of array
• Array boundary check
• Much more complex storage packing behavior compared to mapping
• Do not release unused slots when array shrinks
• Optimization for bytes and string

Let us have a look at the example below:

pragma solidity ^0.4.24;
contract arraytest {

uint256[] array1;
constructor () public {

array1.push(0xAA);

(continued)

5.4 Data Presentation in EVM 145

array1.push(0xBB);
array1.push(0xCC);

}
}

We run it in Remix and check the variable structure in storage:

key:
0x00
000000
value: 0x00
000000000003 key: 0x290decd9548b62a8d60345a988386fc84ba6bc954
84008f6362f93160ef3e563 value:
0x00
0000aa key:
0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef
3e564 value: 0x000
000000000000000bb key:
0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef
3e565 value: 0x000
000000000000000cc

The length of array which is three in the case above is saved into Slot 0. The
address for specific element follows the same calculation formula as that of mapping.
Each array item is aligned to the 32-byte boundary. If the size of array item is less
than 32 bytes, Solidity compiler will pack array automatically. In this way, it
minimizes the count of using SSTORE opcode and therefore lower GAS fee.

To byte array, there are two cases:

• If the length of byte array is less than 31
Array occupies only 1 slot and the other rules are the same with string.

• If the length of byte array is larger than or equal to 31

Byte array is equal to []byte. Address calculation formula is the same as string and
mapping

5.5 Encode

Calldata is a byte array. How to interpret this byte array? That is why we need ABI
since all calldata follow ABI. In this section, we will describe the fixed-length data
type and dynamic data type in details.

146 5 Application Binary Interface (ABI)

5.5.1 A Simple Example

The following is a simple example which includes a getter and a setter for variable
obj:

pragma solidity ^0.4.24;
contract example {

uint256 obj;
function setObj(uint256 para) public{

obj = para;
}
function getObj() public returns(uint256) {

return obj;
}

}

This contract is deployed to rinkeby testnet. We can use etherscan and search
address 0x6f7cf32ceeb1285b3de93c21f5d229a9680145b9. We created a transac-
tion to call setObj (100). And it can be checked at address
0xd5d0f93b3d4d127ea423c66f72d09c693823e5bab20411588123ca13851e08dc

The transaction output is

0x5f0f9b3e000000000000000000000000000000000
0000000000000000000000000000064

To EVM, it is 36 bytes metadata and EVM will not process metadata and pass it
directly to smart contract as calldata. If contract is a Solidity program, then EVMwill
interpret these metadata as function call and execute appropriate assembly code for
setObj (100).

Calldata can be divided into two parts:
Function selector(4byte)

0x5f0f9b3e

First parameter(32byte)

00064

First 4 bytes of calldata is function selector and the rest of calldata is the function
parameters padded to 32 bytes. In the example above, there is only one parameter
which is 0x1. Function selector is the kecccak256 hash value for function signature.

5.5 Encode 147

In the example, the function signature is setObj (uint256), which is function name
and function parameter type. So totally, 36 bytes raw data is passed to contract as
calldata.

5.5.2 An Example of External Call

External data is passed into the contract as calldata. Calldata is just a series of bytes.
And EVM does not provide the parse method for calldata. We use the sample
contract in Sect. 5.5.1 for analysis purpose. First, we start to compile the contract
source code:

solc --bin --asm --optimize example.sol

The assembly code for contract body is under label sub_0:

sub_0: assembly {
... */ /* "example.sol":26:196 contract example {

mstore(0x40, 0x80)
jumpi(tag_1, lt(calldatasize, 0x4)) // revert if calldatasize

less than 4 bytes
and(div(calldataload(0x0),

0x100),
0xffffffff)

0x5f0f9b3e
dup2
eq
tag_2
jumpi
dup1
0xeb9ee256
eq
tag_3
jumpi

tag_1:
0x0
dup1
revert

. . .
auxdata:

0xa165627a7a72305820f7b5c295ee9b5e1280498
c5294ed8dda9ab726ad61de70eac0149177ceb805210029

Here is a brief description:

148 5 Application Binary Interface (ABI)

• mstore(0x40, 0x60), the first 64 bytes of memory is reserved for SHA3 hash
calculation by EVM.

• auxdata is used to validate if the published code is the same as the deployed
bytecode

Assembly code can be divided into two parts:

1. Invoke methods based on function selector
2. Pass function parameter, execute method and return

First, the following code is to match function selector

// Load first 4 bytes function selector
and(div(calldataload(0x0),

0x100),
0xffffffff)
// if function selector is `0x5f0f9b3e`, then jump to setObj()

0x5f0f9b3e
dup2
eq // if function selector equals to 0x5f0f9b3e(setObj), then jump
to Tag_2, or jump to Tag_1
tag_2
jumpi

// Does not find matched function, Fail & revert.
tag_1:
0x0
dup1
revert

// setObj body
tag_2:
...

The code above is pretty straightforward—extract first 4 bytes as the function
selector. To better understand the code, we rewrite the logic using pseudo-code:

methodSelector = calldata[0:4]
if methodSelector == "0x5f0f9b3e":

goto tag_2 // goto setObj
else:

// if do not find function, then fail and revert.
revert

The following code is the function body:

5.5 Encode 149

// setObj
tag_2:
// Where to goto after method call

tag_3
// Load first argument (the value 0x1).
calldataload(0x4)
// Execute method.
jump(tag_4)

tag_4:
0x0
dup2
swap1
sstore

tag_5:
pop
jump

tag_3:
// end of program
stop

Before entering the function body, EVM needs to complete the following two
tasks:

1. Save the return address for function
2. Put the parameters in calldata on the top of stack

In order for better understanding, we use the following pseudo-code to implement
the same functionality above:

@returnTo = tag_3
tag_2: // setObj
// Loads the arguments from call data onto the stack.
@arg1 = calldata[4:4+32]

tag_4: // obj = para
sstore(0x0, @arg1)

tag_5 // return
jump(@returnTo)

tag_3:
stop

Now, the following is the pseudo-code of the logic combining two parts above.

methodSelector = calldata[0:4]
if methodSelector == "0x5f0f9b3e":
goto tag_2 // goto setObj

(continued)

150 5 Application Binary Interface (ABI)

else:
// does not find matched method, revert
revert

@returnTo = tag_3
tag_2: // setObj(uint256 para)
@arg1 = calldata[4:36]

tag_4: // obj = para
sstore(0x0, @arg1)

tag_5 // return
jump(@returnTo)

tag_3:
stop

5.5.3 ABI Encode for External Method Call

We use Pyethereum as the research tool. Please refer to Sect. 2.2.2.5 for how to
install Pyethereum. We use Pyethereum for demo and validation purpose. We first
need to launch Python3, and then import Pyethereum library under python console:

gavin@gavin-VirtualBox:~/pyethereum$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> from ethereum.utils import sha3;
>>> sha3("setObj(uint256)").hex()
'5f0f9b3e66505667ec37d5a76816853fd768a083
935a34a68c6bf88a744457d9'

5.5.3.1 Fixed-Size Data Type

For fixed-length data types, such as uint256:

>>> from ethereum.abi import encode_abi;
>>> encode_abi(["uint256", "uint256", "uint256"],[1, 2, 3]).hex()
'00
0000000000000000000000010000000000000000000000000
0000000000000000000000000000000000000020
000
00000000000000000003'

5.5 Encode 151

Above three data types are all uint256. Let us try the fixed data types with
different size

>>> encode_abi(["int8", "uint32", "uint64"],[1, 2, 3]).hex()
'000
000000100
000000000000000200000000000000000000000000000000000
00000000000000000000000000003'

Pay attention that above data type like int8, uint32 whose length is less than
256 will be automatically aligned to 32 bytes (256 bit). For the fixed-size array:

>>> encode_abi(
... ["int8[3]", "int256[3]"],
... [[1, 2, 3], [4, 5, 6]]
...).hex()
'000
0000000000001000
00000000000000000000200000000000000000000000000000000000
00000000000000000000000000003000000000000000000000000000000
000000000000000000000000000000000400000000000000000000000
005000000000000000
006'

5.5.3.2 Dynamic Data Type

For dynamic data type, Solidity ABI uses head-tail scheme: dynamic part will be put
at the tail of calldata, while the parameter is put at the head of calldata, which points
to the start of the dynamic part.

>>> encode_abi(
... ["uint256[]", "uint256[]", "uint256[]"],
... [[0xd1, 0xd2, 0xd3], [0xe1, 0xe2, 0xe3], [0xf1, 0xf2, 0xf3]]
...).hex()
'00
0000000000000000000060000000000000000000000000000000
00000000000000000000000000000000e0000000000000000000000000
0000000000000000000000000000000000000160000000000000000000
000300000000000
000d10000
00
d2000

(continued)

152 5 Application Binary Interface (ABI)

0000000d300
0000000000000003000
000000000000000000000e10000000000000000000000000000000000
0000000000000000000000000000e2000000000000000000000000000
00000000000000000000000000000000000e300000000000000000000
00030000000000000
000f1000000
00f
2000
00000f3'

We re-format the output above since binary format above is a little clumsy.

/************* HEAD (32*3 bytes) *************/
// arg1: Array data at 0x60
00
000060
// arg2: Array data at 0xe0
00
00000000e0
// arg3: Array data at 0x160
000
00000000160
/************* TAIL (128**3 bytes) *************/
// Arg1 is saved at 0x60 including elements and array length
00
0000000003
000
000000000d1
000
000000000d2
00
00000000d3
// Arg2 is saved at 0xe0
000
00000000003
000
000000000e1
000
000000000e2
000
000000000e3
// Arg3 is saved at 0x160
000
00000000003
000
000000000f1
000

(continued)

5.5 Encode 153

000000000f2
000
000000000f3

Let us see what will happen if we use fixed size and dynamic data type together:
{static, dynamic, static} (Fig. 5.2).

/************* HEAD (32*3 bytes) *************/
// arg1: 0xdddd
00
000000dddd
// arg2: look at position 0x60 for array data
000
00000000060
// arg3: 0xeeee
000
0000000eeee
/************* TAIL (128 bytes) *************/
// Address is 0x60. Data is at arg2 of 0x60
000
00000000003
000
000000000f1
000
000000000f2
000
000000000f3

Fig. 5.2 {static, dynamic, static} data presentation

154 5 Application Binary Interface (ABI)

For string and byte array, Solidity also uses head-tail coding scheme:

// arg1: look at position 0x60 for string data
00
0000000060
// arg2: look at position 0xa0 for string data
000
000000000a0
// arg3: look at position 0xe0 for string data
00
0000000000e0
// 0x60 (96). Data for arg1
00
0000000004
6161616100
0000000000
// 0xa0 (160). Data for arg2
00
0000000004
6262626200
0000000000
// 0xe0 (224). Data for arg3
000
000000004
6363636300
0000000000

If length of the string is larger than 32 bytes (Fig. 5.3).

// Arg1 indicates that array data start at 0x20
00
0000000020
// Length of String is 0x30 (48)
00
000000000030

(continued)

Fig. 5.3 Data presentation if string is larger than 32 bytes

5.5 Encode 155

616
16161616161
616161616161616161616161616161610000000000000000000000
0000000000

The code of the nested data:

// arg1: The outter array is at position 0x20.
00
000000000020
// 0x20. Each element is the position of an inner array.
00
000000000003
00
000000000060
00
0000000000e0
00
000000000160
// array[0] at 0x60
000
00000000003
000
000000000a1
000
000000000a2
000
000000000a3
// array[1] at 0xe0
000
00000000003
000
000000000b1
000
000000000b2
000
000000000b3
// array[2] at 0x160
00
000000000003
00
0000000000c1
00
0000000000c2
00
0000000000c3

EVM uses complement coding scheme to present negative numbers. So the
presentation of -1 in EVM is (Fig. 5.4).

156 5 Application Binary Interface (ABI)

0xff
ffffffffffffffffffff

5.6 ABI Programming

We open any editor, create a file named MyToken.sol, and copy and paste the
contract source code described in Sect. 4.3.1.2 into MyToken.sol. And then, open
a command prompt, run the following command:

solcjs MyToken.sol --bin

After successful compilation, a MyToken_sol_MyToken.bin file will be gener-
ated. This file contains contract’s bytecode. Next, we need to use solc to create ABI
(Application Binary Interface). The generated file is a contract template used for
interface containing available methods in the contract. Using the following com-
mand to generate ABI file:

solcjs MyToken.sol --abi

We should see a new json format file—MyToken_sol_MyToken.abi in which
contract interface is defined. Last, we need to deploy it. Assume that we have testrpc/
Ganache running on local and listening on port 8545:

Fig. 5.4 Data presentation for nested data

5.6 ABI Programming 157

//instance web3
Web3 = require('web3')
provider = new Web3.providers.HttpProvider("http://
localhost:8545")
web3 = new Web3(provider)

We use Web3 API to parse contract ABI and interact with the contract. Next, we
need to deploy contract bytecode to testrpc:

// read file
myTokenABIFile = fs.readFileSync('MyToken_sol_MyToken.abi')
myTokenABI = JSON.parse(myTokenABIFile.toString())
myTokenBINFile = fs.readFileSync('MyToken_sol_MyToken.bin')
myTokenByteCode = myTokenBINFile.toString()
// Deploy
account = web3.eth.accounts[0]
MyTokenContract = web3.eth.contract(myTokenABI)
contractData = { data: myTokenByteCode, from: account, gas: 999999
}
deployedContract = MyTokenContract.new(contractData)

At last, we call deployedContract to validate our deployed contract and save
contract address because we will use it later. Solidity automatically maps state
variable to memory slot. The mapping method is simple:

• Static size variable (all types except mapping and dynamic array) is mapped to
memory slot starting from 0.

• For a dynamic array, memory slot saves the length of array and its data is saved to
(keccak256(p)) slot.

• For mapping, the memory slot will not be used. For key K, its mapping value will
be saved to slot at keccak256(k,p). Be careful: keccak256 (k,p) will be always
aligned to 32 bytes.

ABI is the specification about how EVM interprets and executes contract
bytecode. In this chapter, we know how EVM encodes and decodes calldata of
different data type. We will switch focus to design complex smart contract in
Solidity in next chapter.

158 5 Application Binary Interface (ABI)

Chapter 6
Operation Principles of Smart Contract

In this chapter, we will discuss some advanced topics of smart contract programming
using Solidity, including:

• Design patterns
• How to save GAS costs
• Solidity inline assembly
• Operation principles of Solidity smart contract

Only by deeply understanding these topics can we write Solidity smart contracts
on the Ethereum blockchain quickly, efficiently as well as cost effectively. Mean-
while, we will have a deeper understanding of the vulnerabilities and security
programming in Solidity smart contracts. When we master the Solidity assembly
language, we can also implement some functions that are not built-in Solidity.

6.1 Design Pattern

When we are writing a large-scale program system, design patterns are introduced to
ensure the readability and maintainability. There are many patterns that software
engineers are familiar with:

• Creational Patterns (e.g. Singleton, Factory, AbstractFactory, etc.)
• Behavioral Pattern (e.g. Observer, Visitor, Mediator, etc.)
• Structural Pattern (e.g. Bridge, Composite, Facade, etc.)

With the popularity of decentralized applications, some design patterns are also
recognized widely in the Solidity community. In this sub-section, we will discuss
some of the more mature patterns.

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_6

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_6&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_6#DOI

6.1.1 Contract Self-Destruction

Contract self-destruction is used to terminate a contract and remove the contract from
the blockchain forever, which exists in the real world as well. One example is a loan
contract. When the loan is fully paid off, the contract must be destroyed. Another
example is bidding. After the bidding period ends, the contract must also be destroyed.
When a contract is destroyed, two things will happen:

1. Transaction related to the contract will fail
2. The funds sent to the destroyed contract will be lost

Therefore, all references to the destroyed contract must be deleted. Moreover,
when sending funds, call Get () to confirm that the contract exists before sending.

The code snippet below is an example, in which destroyContract () is used to
destroy the contract itself. We also use the ownerRestricted modifier to ensure that
only the owner of the contract can destroy it.

contract SelfDesctructionContract {
public address owner;
public string someValue;

modifier ownerRestricted {
require(owner == msg.sender);

_;
}
// constructor
function SelfDesctructionContract() {

owner = msg.sender;
}
// setter
function setSomeValue(string value){

someValue = value;
}
// only the owner of the contract can destroy it
function destroyContract() ownerRestricted {

suicide(owner);
}

}

6.1.2 Factory Contract

The Factory pattern is used to create and deploy sub-contracts. We can see these
sub-contracts as assets, such as a house or a bicycle. Factory pattern stores all
sub-contract’s addresses for easy retrieval when they are needed. A common use

160 6 Operation Principles of Smart Contract

case is buying and selling assets and tracking ownership changes. When selling an
asset, you must add a payable modifier to the function.

contract AutoShop {
address[] autoAssets;
function createChildContract(string brand, string model)

public payable {
// check if the sent ether is enough to cover the car asset ...
address newAutoAsset = new AutoAsset(brand, model, msg.

sender);
autoAssets.push(newAutoAsset);

}
function getDeployedChildContracts() public view returns
(address[]) {

return autoAssets;
}

}
contract AutoAsset {

string public brand;
string public model;
address public owner;
function AutoAsset(string _brand, string _model, address

_owner) public
{

brand = _brand;
model = _model;
owner = _owner;

}
}

Address newCarAsset ¼ new CarAsset (..) will trigger a transaction, deploys the
sub-contract to the blockchain, and returns the contract address. Then, the contract
addresses are stored in the array address [] CarAssets in contract AutoShop.

6.1.3 Name Registry

Imagine that you are writing a DApp for Ebay. You have written
ClothesFactoryContract, GamesFactoryContract, BooksFactoryContract, etc., and
recorded the address of these factory contracts in the DApp. If these contracts change
frequently, you must track them. In this case, you can use the Name Registration
Pattern to store the mappings between contract names and contract addresses, so that
you can find the contract address according to the contract name. You can also track
different versions.

6.1 Design Pattern 161

contract NameRegistry {
struct ContractDetails {

address owner;
address contractAddress;
uint16 version;

}
mapping(string => ContractDetails) registry;
function registerName(string name, address addr, uint16 ver)

returns (bool) {
// versions should start from 1
require(ver >= 1);
ContractDetails memory info = registry[name];
require(info.owner == msg.sender);
// if the registry doesn’t exist, create it
if (info.contractAddress == address(0)) {

info = ContractDetails({
owner: msg.sender,
contractAddress: addr,
version: ver

});
} else {
info.version = ver;
info.contractAddress = addr;

}
// modify the registry
registry[name] = info;
return true;
}
function getContractDetails(string name) constant returns

(address, uint16) {
return (registry[name].contractAddress, registry[name].

version);
}

}

With the example above, we can get the contract address and the specified version
of the contract using getContractDetails (name).

6.1.4 Mapping Iterator

Mapping in Solidity does not support traversal, so Mapping Iterator is useful if you
need to traverse it. However, because both storage and traversal on Ethereum cost
Gas, and the cost increases when the size of the mapping grows, we shall avoid using
the traversal function.

162 6 Operation Principles of Smart Contract

contract MappingIterator {
mapping(string => address) elements;
string[] keys;
function put(string key, address addr) returns (bool) {
bool exists = elements[key] != address(0)
if (!exists) {

keys.push(key);
}
elements[key] = addr;
return true;

}
function getKeyCount() constant returns (uint) {

return keys.length;
}
function getElementAtIndex(uint index) returns (address) {

return elements[keys[index]];
}
function getElement(string name) returns (address) {

return elements[name];
}

}

6.1.5 Withdrawal Pattern

Imagine you are selling goods. It is possible that the goods are unqualified and
returned by a buyer. In this case, you will have to refund the buyer. You can write a
refund function to traverse all buyers, find those buyers who want to get a refund,
and send the money to the addresses of those buyers using buyerAddress.transfer ()
or buyerAddress.send (). The difference between them is that transfer function will
throw an exception when an error occurs and send () will not throw an exception,
instead it set the return value to false. This feature of Send () is important, because
most buyers are external accounts, but some buyers may be contract accounts. If the
programmer of the contract account make a mistake in writing the fallback function
and throw an exception, the traversal will be terminated. Then the transaction is
completely rolled back, and no buyer will get the refund. In other words, they are
blocked.

It is better and safer to use send () than to expose the withdrawFunds () function to
the outside world. Therefore, the wrong contract account will not prevent other
buyers from getting a refund.

6.1 Design Pattern 163

contract WithdrawalContract {
mapping(address => uint) buyers;
function buy() payable {

require(msg.value > 0);
buyers[msg.sender] = msg.value;

}
function withdraw() {
uint amount = buyers[msg.sender];
require(amount > 0);
buyers[msg.sender] = 0;
require(msg.sender.send(amount));

}
}

6.2 Save Gas Costs

Ethereum is known to some as a “World Computer.” Any operation using its
computing resources must pay a fee called GAS costs. The following web sites
can be used to calculate GAS as costs:

• EthGasStation—Web site for estimating transaction costs and times.
https://ethgasstation.info/

• Meter Petrometer—Calculates the daily gas used by a particular account.
https://github.com/makerdao/petrometer

• CryptoProf—Smart contract gas consumption measurement tool.
https://github.com/doc-ai/cryptoprof

GAS of all the opcodes is defined in Ethereum Yellow Book.1 Web3 library
package has a function named web3.eth.estimateGas() to estimate GAS needed for
specific transaction.

web3.eth.estimateGas(callObject [, callback])

It performs a message call or transaction on the VM of local node, but does not
broadcast the transaction as a block, and returns the amount of GAS being required.
The parameter is of type web3.eth.sendTransaction, while other parameters are
optional. The return value is the GAS consumed by the simulated call/exchange.
Below is an example of a call:

1https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_
mO09GtSKEKrAsfO7Frgx18pNU/edit#gid¼0.

164 6 Operation Principles of Smart Contract

https://ethgasstation.info/
https://github.com/makerdao/petrometer
https://github.com/doc-ai/cryptoprof
https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0
https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0
https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0

var result = web3.eth.estimateGas({
to: "0xc4abd0339eb8d57087278718986382264244252f",
data:

"0xc6888fa1000
00000000000000003"

});
console.log(result); //

"0x00
00000015"

Some of best practices to save Gas are explained in the following sections.

6.2.1 Mind the Data Types

In Ethereum smart contract development, it is preferred to use 256-bit variables, such
as uint256 and bytes32. This may be counterintuitive at first, but considering the
characteristics of Ethereum VM, it makes sense, because each memory slot has
256 bits. Therefore, if you store only one uint8 type variable, the EVM must pad it
with 0 to align, which costs GAS. In addition, the EVM computing is based on
uint256. If you use a non-uint256 variable, there will be one extra step to convert it to
uint256. Please note in order to fill the entire storage slot, the size of your variables
must be designed carefully. More details will be covered in Sect. 6.2.3.

6.2.2 Store Values in Byte-Encoded Form

A relatively cheaper way to store and read information is to include them directly in
the smart contract as byte encoding. The disadvantage is that once the contract is
deployed, the values cannot be changed. However, the GAS cost spent on initializing
and storing data is greatly reduced. There are two possible ways to do this: (1) use
constant when declaring variables and (2) hardcode variables.

uint256 public v1;
uint256 public constant v2;
function calculate() returns (uint256 result) {

return v1 * v2 * 10000
}

In the example above, the variable v1 is in the contract storage block and the
variables v2 and the constant 10000 are in the byte encoding of the contract. Reading
the variable v1 is implemented by SLOAD operation, which will consume 200 Gas.

6.2 Save Gas Costs 165

6.2.3 Compressing Variables with the SOLC Compiler

When we want to store data permanently on the blockchain, the SSTORE opcode
runs in the background. This is almost the most expensive command and will
probably consume 20,000 GAS. Therefore, avoid to use it whenever possible. In
structs, the amount of GAS consumed by the SSTORE operation can be reduced by
rearranging the variables.

struct Data {
uint64 a;
uint64 b;
uint128 c;
uint256 d;

}
Data public data;
constructor(uint64 _a, uint64 _b, uint128 _c, uint256 _d) public {

Data.a = _a;
Data.b = _b;
Data.c = _c;
Data.d = _d;

}

All the variables in a struct can be sorted into 256-bit slots so that the EVM
compiler can compress them later. In this example, the SSTORE operation is
performed only twice, once to store a, b, and c, and the other one to store d. The
same principle applies to variables other than struct. Keep in mind that putting
multiple variables in the same slot is more economical than zero-padding. Remem-
ber to turn on the optimization switch for SOLC.

6.2.4 Compressing Variables Using Assembly Code

In general, we can compress the variables so that fewer SSTORE operations are
performed. Such compressions can be done manually. The following code demon-
strates how to compress 4 uint64 variables into a 256-bit memory slot:

function encode(uint64 _a, uint64 _b, uint64 _c, uint64 _d)
internal pure

returns (bytes32 x) {
assembly {

let y := 0
mstore(0x20, _d)

(continued)

166 6 Operation Principles of Smart Contract

mstore(0x18, _c)
mstore(0x10, _b)
mstore(0x8, _a)
x := mload(0x20)

}
}

When reading the contents of a variable, the compressed variable must be
decoded. The following code snippet demonstrates the decoding logic.

function decode(bytes32 x) internal pure returns (uint64 a, uint64 b,
uint64 c, uint64 d) {

assembly {
d := x
mstore(0x18, x)
a := mload(0)
mstore(0x10, x)
b := mload(0)
mstore(0x8, x)
c := mload(0)

}
}

Comparing this method to the one earlier, you will find that this method is not
only cheaper but also has two advantages:

1. Precision: With this method, we are actually doing a bitwise compression.
2. Read once: Because variables are stored in a storage slot, we only need to perform

an import operation to get the values of all variables.

But why do we use the prior method? In the code, you will find that we use
assembly to encode and decode variables, giving up the readability of the program.
This could make the program very error-prone. In addition, because we must include
encoding and decoding functions wherever needed, which greatly increases the cost
of deployment. However, if you really want to save GAS, we can use the latter
method. The more variables can be compressed, the more benefits and GAS savings
you can get.

6.2.5 Concatenating Function Parameters

As we use encoding and decoding functions to optimize the process of reading and
storing data, we can use the same mechanism to concatenate the parameters in a
function call. This will reduce the load on the calling data. It might slightly increase

6.2 Save Gas Costs 167

the cost of execution, but with a reduction in the base cost, we can still save overall
GAS costs.

This article2 compares two function calls, one using parameter concatenation and
the other not, which explains what happened behind the function execution. In the
code example below, its corresponding assembly code shows that the oldExam
function incurs 4 “CALLDATALOAD” operations once it is called, and each
“CALLDATALOAD” operation triggers one memory allocation operation in
Ethereum, while the newExam function incurs only 1 instead.

contract bitCompaction {
function oldExam(uint64 a, uint64 b, uint64 c, uint64 d) public {
}
function newExam(uint256 packed) public {
}

}

6.2.6 Using Merkle Proofs to Reduce Storage Load

The idea of Merkle proof is to prove the validity of a large amount of data using a
small amount of data, which has its unique benefits. Let us look at an example.
Suppose we want to store the transaction information of a car purchase, which
contains 32 configurations. Creating 32 variables, each representing a configuration,
is very expensive. In this situation, we can use the Merkel tree in the following
manners.

Firstly, we divide the 32 configurations into groups; say, we find 4 groups, each
containing 8 configurations. Secondly, we create a hash of the data in each group,
and then divide the 4 hashes into, say 2 groups. We will repeat the process until there
is only one hash, the Merkle root. Only the Merkle root will be uploaded to the chain,
usually in the form of a 256-bit variable (keccak256) (Fig. 6.1).

We group all the information based on whether we need to use it, because all
elements of each branch in the Merkle tree need to be verified automatically. This
means that we only need one verification process. In the example above, assuming
the car manufacturer gave you a wrong color, we can still easily identify this error
(Fig. 6.2).

2https://medium.com/coinmonks/techniques-to-cut-gas-costs-for-your-dapps-7e8628c56fc9.

168 6 Operation Principles of Smart Contract

https://medium.com/coinmonks/techniques-to-cut-gas-costs-for-your-dapps-7e8628c56fc9

bytes32 public merkleRoot;

//Let a,...,h be the orange base blocks
function check
(

bytes32 hash4,
bytes32 hash12,
uint256 a,
uint32 b,
bytes32 c,
string d,
string e,

(continued)

Fig. 6.2 Merkle tree verification

Fig. 6.1 Merkle tree

6.2 Save Gas Costs 169

bool f,
uint256 g,
uint256 h

)
public view returns (bool success)

{
bytes32 hash3 = keccak256(abi.encodePacked(a, b, c, d, e, f, g,

h));
bytes32 hash34 = keccak256(abi.encodePacked(hash3, hash4));
require(keccak256(abi.encodePacked(hash12, hash34)) ==

merkleRoot, "Wrong Element");

return true;
}

If a variable is accessed or modified from time to time, traditional method is a
better solution to store it instead. At the same time, we must make sure that every
branch is not too large, which might exceed the depth of the transaction stack.

6.2.7 Stateless Contracts

Transaction data and event calls are stored on the blockchain. Therefore, using
stateless contracts instead of constantly modifying the contract state, we only need
to send transactions and values we want to modify. Because SSTORE operations
cost most of the transaction GAS, stateless contracts use much less GAS than stateful
contracts. More details about stateless contract can be found here.3

Let us apply the stateless contract scheme to the car transaction example above.
We can send 1 or 2 transactions, depending on whether we can concatenate the
parameters of the function and thus pass 32 configuration parameters about the car.
As long as we only need to verify external information, this scheme is more
appropriate and may be cheaper than Merkle proof scheme. Furthermore, accessing
this information from the contract is basically impossible.

6.2.8 Storing Data on IPFS

The IPFS network is a decentralized data store, where each file is addressed by a
hash of the content instead of a URL. Using its hash value to address a file not only
prevent tampering the content, but also bring a huge advantage. We can upload data

3https://medium.com/@childsmaidment/stateless-smart-contracts-21830b0cd1b6.

170 6 Operation Principles of Smart Contract

https://medium.com/@childsmaidment/stateless-smart-contracts-21830b0cd1b6

on the IPFS network and store the corresponding hash value in the contract. A
detailed explanation can be found here.4

As in stateless contract, this method is not using the data in the contract (possibly
using Oracles). If you want to store a large amount of data, such as videos, it is best
to store it on IPFS. (or Swarm, another decentralized storage system, which is an
alternative to IPFS).

Because Sects. 6.2.6, 6.2.7, and 6.2.8 above are somehow similar, here is a
comparison and summary:

• Merkel trees: small to medium data

– Data can be used directly in the contract.
– Modifying data is complicated

• Stateless contract: small to medium data

– Data CANNOT be used directly into the contract
– Data can be modified

• IPFS: large data

– Using data in contracts is complicated
– Modifying data is complicated

6.2.9 Bit-Compaction

Bit-compaction format for external function parameters will help cut gas costs
because it reduces the size of the data sent to the Ethereum blockchain. At the
same time, this solution also incurs some excess GAS costs to unpack the bits.
Overall, the savings are greater than the excess costs. Take a look at the following
code snippet:

pragma solidity ^0.4.21;
contract bitCompaction {

function oldExam(uint64 a, uint64 b, uint64 c, uint64 d) public {
}
function newExam(uint256 packed) public {
}

}

Their corresponding assembly code shows that the oldExam function has
4 “CALLDATALOAD” operations and each “CALLDATALOAD” operation will

4https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf.

6.2 Save Gas Costs 171

https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf

trigger an Ethereum memory allocation operation; in comparison, the newExam
function have only 1.

oldExam call data: ([]uint8) (len=132 cap=132) {
00000000 3e f2 62 fd 00 00 00 00 00 00 00 00 00 00 00 00
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000020 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000040 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000080 00 00 00 01
}
newExam call data: ([]uint8) (len=36 cap=36) {
00000000 83 ba 6e 5a 00 00 00 00 00 00 00 01 00 00 00 00
00000010 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00
00000020 00 00 00 01
}

It can be seen that those uint64 parameters in the oldExam function are first
converted to uint256. The GAS costs of the above two functions are 22235 and
21816, respectively, which means that the newExam function saves 419 gas costs.
The more parameters, the more gas costs will be saved by using bit-compaction.

Please note that the full assembly code is too large to present here, so we only
showed part of it above. But it can easily be generated using:

`solc—asm—optimize—optimize-runs 200 bitCompaction.sol`.

6.2.10 Batching

Batching can reduce gas cost because it can reduce common data processing.
Consider the following code snippet:

Old: func once(uint256 header, uint256 val...) x N
New: func batch(uint256 header, uint256[] val... x N)

Executing the old function N times, we will process the common “header” field
N times, as well as calling the function N times. However, using batching, the
function is called only once and the common “header” field is processed only
once. Therefore, it saves gas costs by reducing “CALLDATALOAD,” memory
allocation, and function call operations. The larger the N, the larger the savings.

172 6 Operation Principles of Smart Contract

6.2.11 Reading and Writing Separation on Storage Struct

Separating reading and writing on storage struct can reduce GAS costs in many
ways. Let us take a look at the following code snippet:

pragma solidity ^0.4.21;
contract structWrite {

struct Object {
uint64 v1;
uint64 v2;
uint64 v3;
uint64 v4;

}
Object obj;
function StructWrite() public {

obj.v1 = 1;
obj.v2 = 1;
obj.v3 = 1;
obj.v4 = 1;

}
function oldExam(uint64 a, uint64 b) public {

uint a0; uint a1; uint a2; uint a3; uint a4; uint a5; uint a6;
uint b0; uint b1; uint b2; uint b3; uint b4; uint b5;
obj.v1 = a + b;
obj.v2 = a - b;
obj.v3 = a * b;
obj.v4 = a / (b + 1);

}
function setObject(uint64 v1, uint64 v2, uint64 v3, uint64 v4)

private {
obj.v1 = v1;
obj.v2 = v2;
obj.v3 = v3;
obj.v4 = v4;

}
function newExam(uint64 a, uint64 b) public {

uint a0; uint a1; uint a2; uint a3; uint a4;
uint b0; uint b1; uint b2; uint b3;
setObject(a + b, a - b, a * b, a / (b + 1));

}
}

When the compiler optimization switch is turned on, SOLC compiles the write
operation of the storage struct variable for the example above in the following
manner: the oldExam function will have 1 EVM “SSTORE” operation for each
struct field, where “SSTORE” is the most expensive operation in terms of GAS
costs. Because current SOLC implementation does not optimize the “SSTORE”
operation if there is no enough stack space (note: stack space can hold 16 local
variables only). If we use the “reading/writing separation” paradigm, there will be

6.2 Save Gas Costs 173

stack space available for the compiler to optimize the code, then only 1 “SSTORE”
operation is generated in this case. This can be verified by looking at the compiled
assembly code. This is only suitable for the current SOLC version and may change
later. In the above example, gas costs for oldExam and newExam are 58140 and
27318, respectively, which means newExam costs about 30822 less. While using
“reading/writing separation” strategy, if there is no enough stack space, the more
fields in the struct, the more we can save on GAS costs.

6.2.12 uint256 and Direct Memory Storage

Calculation in SOLC is using uint256. Therefore, other types, such as uint8, must be
converted when they are referenced, which would require extra GAS. In addition,
direct memory access saves more than direct storage access, which also costs less
GAS than accessing a struct pointer. So, here are some best practices:

uint8 data; => uint256 data;
uint256 val = storageData; => uint256 memoryData = storageData;
(N Times) uint256 val = memoryData;
uint64 val = obj.v1; => uint64 val = val1;

6.2.13 Assembly Optimization

While compiling SOLC code, make sure you turn on the compiler switch for GAS
costs: SOLC “optimize-runs” to generate the best assembly code that can run on
the EVM.

6.3 Assembly

We summarize the commonly used assembly operations and corresponding gas costs
in the following table.

Operation GAS Illustration

ADD/SUB 3 Arithmetic operation

MUL/DIV 5 Arithmetic operation

ADDMOD/MULMOD 8 Arithmetic operation

AND/OR/XOR 3 Bitwise operation

LT/GT/SLT/SGT/EQ 3 Comparison operation

(continued)

174 6 Operation Principles of Smart Contract

Operation GAS Illustration

POP 2 Stack operation

PUSH/DUP/SWAP 3 Stack operation

MLOAD/MSTORE 3 Memory operation

JUMP 8 Unconditional Jump

JUMPI 10 Conditional Jump

SLOAD 200 Storage operation

SSTORE 5000/20000 Storage operation

BALANCE 400 Get account balance

CREATE 32000 Create new account

CALL 25000 Call operation

6.3.1 Stack

Unlike traditional x86 architecture which is based on registers instead of virtual
stack, EVM is a stack-based machine. The maximum stack depth of EVM is 1024,
where each item in the stack is 256 bits, i.e. the EVM itself operates on 256-bit
words. The word size here is 32 bytes, and this design facilitates Keccak256 hash
scheme and elliptic curve calculations. In order to access the stack directly, the EVM
provides the following opcodes:

• POP remove item from the top of the stack
• PUSHn (n ranges from 1 to 32, e.g. PUSH2) put the next n-byte item into the

stack
• DUPn (n ranges from 1 to 32, e.g. DUP32) duplicates the nth item in the stack
• SWAPn (n ranges from 1 to 32, e.g. SWAP4) swaps the 1st and nth items in the

stack

6.3.2 Calldata

The Calldata is a read-only byte-addressable space where the data parameter of a
transaction or call is held. Unlike the Stack, to use this data you have to specify an
exact byte offset and number of bytes you want to read. The opcodes related to
Calldata provided by EVM are

• CALLDATASIZE returns the size of transaction data
• CALLDATALOAD imports 32 bytes of transaction data onto the stack
• CALLDATACOPY copies transaction data of a certain number of bytes to

memory

6.3 Assembly 175

Solidity provides inline assembly corresponding to the above: calldatasize,
calldataload and calldatacopy, respectively. For example, calldatacopy has three
parameters (t, f, s), which will copy the s bytes of Calldata at position f to the
memory at position t. At the same time, Solidity allows access to Calldata through
msg.data. Let us take a look at the inline assembly statements in delegatecall:

assembly {
let ptr := mload(0x40)
calldatacopy(ptr, 0, calldatasize)
let result := delegatecall(gas, _impl, ptr, calldatasize,

0, 0)
}

In order to delegate a call to the _impl address, msg.data must be sent over. We
know that the delegatecall opcode operates on memory data, and we need to copy the
Calldata to the memory. That is why we use calldatacopy to copy all Calldata to a
memory position addressed by pointer ptr.

Let us take a look at the following code:

contract Calldata {
function add(uint256 _a, uint256 _b) public view
returns (uint256 result)
{
assembly {

let a := mload(0x40)
let b := add(a, 32)
calldatacopy(a, 4, 32)
calldatacopy(b, add(4, 32), 32)
result := add(mload(a), mload(b))

}
}

}

The purpose of this function is to return the sum of 2 numbers _a and _b. It can be
seen that we store the memory pointer of address 0x40 to the variable a, and the
variable b is the 32 bytes after a. Then we use calldatacopy to store the first argument
to a. Note that we are copying from the place where the calldata is shifted by 4. This
is because the first 4 bytes are the function selector, which is used by EVM to
determine which function to call. After that, we copy the second parameter to the

176 6 Operation Principles of Smart Contract

memory space addressed by variable b. Finally, we just calculate the sum by loading
a and b in the memory.

You can test it in the truffle console with the following command:

truffle(develop)> compilet
truffle(develop)> Calldata.new().then(i => calldata = i)
truffle(develop)> calldata.add(1, 6).then(r => r.toString()) // 7

6.3.3 Memory

Memory is a volatile, read-write, byte-addressable space. It is mainly used to store
data during program execution, mostly to pass parameters to internal functions. The
memory is cleared at the beginning of each message call. All address values are
initialized to 0. Like Calldata, memory calculates addresses in bytes, but we can only
read in the form of 32-byte words at a time. When we write a word into the memory
that has not been used before, we say that the memory is "expanded." In this case,
there are expansion costs in addition to the cost of the write operation itself.
Expansion costs will increase linearly for the first 724 bytes, and then it will be
quadratically. EVM provides 3 opcodes to operate memory:

• MLOAD loads a word from the memory to the stack
• MSTORE stores a word to the memory
• MSTORE8 stores a byte to the memory

Solidity also provides inline assemblies corresponding to these opcodes: mload,
mstore, and mstore8.

Solidity always holds a free memory pointer at 0x40, which points to the address
of the first unused memory word. That is why it is necessary to import the word in
the inline assembly. The first 64 bytes of memory are reserved by the EVM. Using
free memory pointers can ensure that our program does not overwrite the memory
used by Solidity itself. For example, in the delegatecall example above, a free
memory pointer is used to store calldata for later use, because delegatecall needs
to import/export data from memory.

In addition, let us take a look at the bytes generated by the Solidity compiler. We
will find that they all start with 0x6060604052 . . ., let us analyze the meaning of
these byte codes:

PUSH1 : EVM opcode is 0x60
0x60 : The free memory pointer
PUSH1 : EVM opcode is 0x60
0x40 : Memory position for the free memory pointer
MSTORE : EVM opcode is 0x52

6.3 Assembly 177

One must be very careful when using assembly to manipulate memory, otherwise
it is very likely to overwrite the reserved space of the system.

6.3.4 Storage

Storage is a persistent read-write word-addressable space, where each contract stores
its persistent information. It is a space of 2256 slots, where each slot is 32 bytes, using
key-value mapping scheme. All positions are initialized to 0.

The GAS costs of saving data to storage is one of the highest of all EVM
operations. Modifying a storage slot from 0 to a non-zero value incurs a gas cost
of 20,000. Storing the same non-zero value or setting a non-zero value to zero costs
5,000. When a non-zero value is set to 0, 15,000 will be refunded.

EVM provides the following two opcodes to operate on storage:

• SLOAD loads a word from the storage into the stack.
• SSTORE stores a word to the storage.

Solidity's inline assembly also supports the two opcodes above.
Solidity automatically maps each defined state variable to a slot in the Storage.

The strategy is simple. Static fixed-length variables (except mapping and dynamic
arrays) are picked and placed on consecutive addresses starting from 0 in the storage.
For dynamic arrays, its length will be stored in a slot (p), and its data will be stored in
the slots addressed by a hash (keccak256 (p)). For mapping variables, the value
corresponding to a key k is stored in keccak256 (k, p). Please note that the
parameters in keccak256 (k, p) will be padded to 32 bytes.

Take a look at the storage contract below to examine how the Solidity storage
strategy works:

contract Storage {
uint256 public number;
address public account;
uint256[] private array;
mapping(uint256 => uint256) private map;

function Storage() public {
number = 2;
account = this;
array.push(10);
array.push(100);
map[1] = 9;
map[2] = 10;

}
}

178 6 Operation Principles of Smart Contract

Let us open a truffle console to test its storage structure. First, we will compile and
create a new contract instance:

truffle(develop)> compile
truffle(develop)> Storage.new().then(i => storage = i)

Then we can ensure that the address 0 holds a number 2 and the address 1 holds
the address of the contract:

truffle(develop)> web3.eth.getStorageAt(storage.address, 0)
// 0x02
truffle(develop)> web3.eth.getStorageAt(storage.address, 1)
// 0x..

We can check that the storage position 2 holds the length of the array as follows:

truffle(develop)> web3.eth.getStorageAt(storage.address, 2)
// 0x02

Finally, we can check that the storage position 3 is unused and the mapping
values are stored as we described above:

truffle(develop)> web3.eth.getStorageAt(storage.address, 3)
// 0x00
truffle(develop)> mapIndex =

‘000
0000003’
truffle(develop)> firstKey = ‘000000000000000000000000000000000

0000000000000000000000000000001’
truffle(develop)> firstPosition = web3.sha3(firstKey + mapIndex, {

encoding: ‘hex’ })
truffle(develop)> web3.eth.getStorageAt(storage.address,

firstPosition)
// 0x09

truffle(develop)> secondKey = ‘0000000000000000000000000000000
000000000000000000000000000000002’

truffle(develop)> secondPosition = web3.sha3(secondKey +
mapIndex, { encoding: ‘hex’ })

truffle(develop)> web3.eth.getStorageAt(storage.address,
secondPosition)
// 0x0A

6.3 Assembly 179

6.4 Deconstruct Smart Contract

The following is a standard implementation of the ERC20 token contract. The
program logic is simple. We use it as an example to deconstruct the implementation
of smart contracts. Although this contract has an overflow vulnerability, we ignore it
at the moment and focus on the implementation of contract, bytecode, and assembly.

pragma solidity ^0.4.24;
contract ERC20TokenContract {

uint256 _totalSupply;
mapping(address => uint256) balances;
constructor(uint256 _initialSupply) public {
_totalSupply = _initialSupply;

balances[msg.sender] = _initialSupply;
}
function totalSupply() public view returns (uint256) {
return _totalSupply;

}
function transfer(address _to, uint256 _value) public returns

(bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender] - _value;
balances[_to] = balances[_to] + _value;
return true;

}
function balanceOf(address _owner) public view returns (uint256)
{

return balances[_owner];
}

}

Let us copy the above program to Remix and compile. Note that compiler version
0.4.24 must be chosen (Fig. 6.3).

Let us click on the "Details" button to see information about the contract being
generated (Fig. 6.4).

The Bytecode generated is as below:

608060405234801561001057600080fd5b506040516020806103ee8339810
1806040528101908080519060200190929190505050806000819055508060
0160003373ff1673fffffff
fffffffffffffffffffffffffffffffff1681526020019081526020016000
2081905550506103608061008e6000396000f300608060405260043610610
057576000357c0100
0000000000900463. . .
5600a165627a7a7230582041e440ef41138511bd018bb2004da6344b9aeb2
49ba3cedf943e1e5d786bf67a0029

While the runtime bytecode is

180 6 Operation Principles of Smart Contract

Fig. 6.3 Create and deploy our example contract

Fig. 6.4 Deployed details our example contract

6.4 Deconstruct Smart Contract 181

608060405260043610610057576000357c010000000000000000000000000
0000000000000000000000000000000900463ffffffff16806318160ddd14
61005c57806370a0823114610087578063a9059cbb146100de575b600080f
d5b34801561006857600080fd5b50610071610143565b. . .
fff1673ff16815260200190
81526020016000208190555060019050929150505600a165627a7a7230582
041e440ef41138511bd018bb2004da6344b9aeb249ba3cedf943e1e5d786
bf67a0029

Comparing the 2 bytecodes above, we can see that the difference lies in the
underlined part as highlighted. Actually, the following code is applicable to all
contracts, which is imported by the contract itself.

608060405234801561001057600080fd5b506040516020806103ee8339810
1806040528101
9080805190602001909291905050508060008190555080600160003373fff
fffffffffffff
ffffffffffffffffffffffff1673fffffffffffffffffffffffffffffffff
fffffff168152
60200190815260200160002081905550506103608061008e6000396000
f300

The bytecodes above are completely unreadable, which is impossible for us to
understand or analyze. Let us take a look at the readable assembly code (the
description of the assembly instructions can be found here.5

.code
PUSH 80 contract ERC20TokenContract {

...
PUSH 40 contract ERC20TokenContract {

...
MSTORE contract ERC20TokenContract {

...
CALLVALUE constructor(uint256 _initialSu...
DUP1 olidity ^
ISZERO a
PUSH [tag] 1 a
JUMPI a
PUSH 0 n
DUP1 \n
REVERT .24;

\n

(continued)

5https://github.com/ethereum/solidity/blob/develop/docs/assembly.rst#opcodes.

182 6 Operation Principles of Smart Contract

https://github.com/ethereum/solidity/blob/develop/docs/assembly.rst#opcodes

cont
tag 1 a
JUMPDEST a
POP constructor(uint256 _initialSu...
PUSH 40 constructor(uint256 _initialSu...
MLOAD constructor(uint256 _initialSu...
PUSH 20 constructor(uint256 _initialSu...
DUP1 constructor(uint256 _initialSu...
PUSHSIZE constructor(uint256 _initialSu...
DUP4 constructor(uint256 _initialSu...

. . .

The above assembly code is copied from Remix. You can also generate assembly
code for smart contracts like this:

solc --asm --output-dir=build/binaries A.sol

A reference table of assembly and bytecode can be found in [40]. Here are some
examples:

0x60 => PUSH
0x01 => ADD
0x02 => MUL
0x00 => STOP
...

In order to understand the code more directly, we copied the contract code to
Solmap (https://solmap.zeppelin.solutions/). Please note that there is a slight differ-
ence between the code generated by Solmap and the code generated by Remix
(Fig. 6.5).

For convenience of explanation, we use {...} to represent the stack, and {a, b}
means that there are 2 elements in the stack, where the element on the top is a, and
the bottom is b.

6.4.1 Contract Creation

Below is the generic binary code for contract creation/import. Every time a smart
contract is imported, the compiler will inject the following code.

6.4 Deconstruct Smart Contract 183

https://solmap.zeppelin.solutions/

608060405234801561001057600080fd5b506040516020806103ee8339810
1806040528101
9080805190602001909291905050508060008190555080600160003373fff
fffffffffffff
ffffffffffffffffffffffff1673fffffffffffffffffffffffffffffffff
fffffff168152
60200190815260200160002081905550506103608061008e6000396000f
300

6.4.1.1 Get Free Memory Pointer

Take the first 5 bytes of the above byte code as an example: 6080604052. The
bytecode for Push1 is 0x60, so:

6080 ==ii PUSH1 0x80
6040 ==ii PUSH1 0x40
52 ==ii MSTORE

After executing the second instruction, the stack status is like {0x40,0x80}. Then
the third instruction can be interpreted as follows:

Fig. 6.5 Solmap generated assembly code

184 6 Operation Principles of Smart Contract

mstore(0x40, 0x80)
| |
| value

address

The instruction above is to store value 0x80 to the address 0x40. As we explained
above, 0x40 is the address of the free memory pointer (See Solidity's memory model
in Sect. 5.1). So, the free memory starts at address 0x80 after this opcode. The code
in the following sections is copied from Solmap.

6.4.1.2 Payable Check

The creation of a contract requires Ether/Wei. The following code is used to check
whether this call comes with Wei/Ether.

3 {0x34} [c5] CALLVALUE
4 {0x80} [c6] DUP1
5 {0x15} [c7] ISZERO
6 {0x61} [c8] PUSH2 0x0010 (dec 16)
7 {0x57} [c11] JUMPI
8 {0x60} [c12] PUSH1 0x00 (dec 0)
9 {0x80} [c14] DUP1
10 {0xfd} [c15] REVERT

CALLVALUE pushes the Wei/Ether of this call to the stack, and DUP1 copies
1 byte of the current top element of the stack, then ISZERO determines whether
Wei/Ether (that is, the current top element of the stack) is 0.

If Wei/Ether is not 0, ISZERO returns 0, and it executes sequentially, skip to
[c16] to continue execution.

If wei/ether is 0, ISZERO returns 1, skip to [c12], set the return value to 0, and
finally call REVERT to fall back.

The entire execution process can be executed step by step and verified in Remix.
In short, the above assembly code implements the following statements:

if(msg.value != 0) revert();

6.4.1.3 Get Constructor Parameters

First, let us look at the JUMP instruction in assembly. The JUMP instruction fetches
the value from the top of the stack and jumps to the address represented by that

6.4 Deconstruct Smart Contract 185

value. The destination must contain a JUMPDEST opcode, otherwise the JUMP
operation will fail. The sole purpose of JUMPDEST is to mark an address as a
legitimate jump destination. JUMPI is similar, but the second element on the top of
the stack cannot be 0, otherwise the jump will not occur. So JUMPI is a
conditional jump.

11 {0x5b} [c16] JUMPDEST
12 {0x50} [c17] POP
13 {0x60} [c18] PUSH1 0x40 (dec 64)
14 {0x51} [c20] MLOAD
15 {0x60} [c21] PUSH1 0x20 (dec 32)
16 {0x80} [c23] DUP1
17 {0x61} [c24] PUSH2 0x0217 (dec 535)
18 {0x83} [c27] DUP4
19 {0x39} [c28] CODECOPY
20 {0x81} [c29] DUP2
21 {0x01} [c30] ADD
22 {0x60} [c31] PUSH1 0x40 (dec 64)
23 {0x90} [c33] SWAP1
24 {0x81} [c34] DUP2
25 {0x52} [c35] MSTORE
26 {0x90} [c36] SWAP1
27 {0x51} [c37] MLOAD

C18-C20: Read the value at 0x40 and push it to the top of the stack. If you have
not forgotten, 0x40 stores the free memory pointer {0x80,. . .}.

C23-C28: Before executing CODECOPY, the status of the stack is {0x80, 0x217,
0x20, 0x20, 0x80}, where 0x217 is the end of the contract body code. CODECOPY
copies the 32 bytes at 0x217 to the free memory pointer (here 0x80). Because the
constructor used to generate the contract is placed at the end of the code, in fact, the
CODECOPY instruction copies the constructor parameters to memory 0x80. The
constructor takes a uint256 parameter, which is exactly 32 bytes.

tag 1 a
JUMPDEST a
POP constructor(uint256 _initialSu...
PUSH 40 constructor(uint256 _initialSu...
MLOAD constructor(uint256 _initialSu...
PUSH 20 constructor(uint256 _initialSu...
DUP1 constructor(uint256 _initialSu...
PUSHSIZE constructor(uint256 _initialSu...
DUP4 constructor(uint256 _initialSu...
CODECOPY constructor(uint256 _initialSu...

In the code above, PUSHSIZE pushes the contract size onto the stack.
C29-C35: Modify the free memory pointer. MSTORE (0x40, 0xa0)

186 6 Operation Principles of Smart Contract

C36-C37: Push parameters onto the stack. This is a general pattern of Solidity
EVM bytecode: push parameters onto the stack before calling a function.

6.4.1.4 Constructor Body

As can be seen in Solmap, the assembly code below represents the implementation
of the following two Solidity statements.

_totalSupply = _initialSupply;
balances [msg.sender] = _initialSupply;

28 {0x60} [c38] PUSH1 0x00 (dec 0)
29 {0x81} [c40] DUP2
30 {0x81} [c41] DUP2
31 {0x55} [c42] SSTORE

C38-C42: Copy the value of the input parameter to the location of Storage
0, which is the location of _totalSupply. Before executing C42, the status of the
stack {0x0, input parameter value of _initialSupply}

Below CALLER refers to msg.sender

32 {0x33} [c43] CALLER
33 {0x81} [c44] DUP2
34 {0x52} [c45] MSTORE
35 {0x60} [c46] PUSH1 0x01 (dec 1)
36 {0x60} [c48] PUSH1 0x20 (dec 32)
37 {0x52} [c50] MSTORE
38 {0x91} [c51] SWAP2
39 {0x90} [c52] SWAP1
40 {0x91} [c53] SWAP2
41 {0x20} [c54] SHA3
42 {0x55} [c55] SSTORE

6.4.1.5 Copy Contract Body Code to Memory

The following code pushes the size of the code (0x01d1) and the starting address of
the code (0x0046) onto the stack, and finally calls CODECOPY to copy the code to
address 0.

6.4 Deconstruct Smart Contract 187

43 {0x61} [c56] PUSH2 0x01d1 (dec 465)
44 {0x80} [c59] DUP1
45 {0x61} [c60] PUSH2 0x0046 (dec 70)
46 {0x60} [c63] PUSH1 0x00 (dec 0)
47 {0x39} [c65] CODECOPY

6.4.1.6 Return Running Status

0x00 is the function status code. The following assembly language is to return the
running status code.

48 {0x60} [c66] PUSH1 0x00 (dec 0)
49 {0xf3} [c68] RETURN
50 {0x00} [c69] STOP

6.4.2 General Part of Contract Body

6.4.2.1 Get Free Memory Pointer

The following code is familiar, which is to get the free memory pointer.

51 {0x60} [c70, r0] PUSH1 0x80 (dec 128)
52 {0x60} [c72, r2] PUSH1 0x40 (dec 64)
53 {0x52} [c74, r4] MSTORE

6.4.2.2 Calldata Check

54 {0x60} [c75, r5] PUSH1 0x04 (dec 4)
55 {0x36} [c77, r7] CALLDATASIZE
56 {0x10} [c78, r8] LT
57 {0x61} [c79, r9] PUSH2 0x0056 (dec 86)
58 {0x57} [c82, r12] JUMPI

188 6 Operation Principles of Smart Contract

C75-C78: Judges whether the size of Calldata is less than 4. If it is, jump to 0x56
using JUMPI (C82).

6.4.2.3 Function Selector

According to the source code above, this Contract has 3 member functions, except
the constructor. The following assembly code is to determine which function
package/wrapper to jump to according to the function selector.

59 {0x63} [c83, r13] PUSH4 0xffffffff (dec 4294967295)
60 {0x7c} [c88, r18] PUSH29

0x0100
(dec 2.695994666715064e+67)

61 {0x60} [c118, r48] PUSH1 0x00 (dec 0)
62 {0x35} [c120, r50] CALLDATALOAD
63 {0x04} [c121, r51] DIV
64 {0x16} [c122, r52] AND

First, push 4 bytes to the stack, then push 29 bytes to the stack, and then push
0x00 to the top of the stack. CALLDATALOAD then reads 32 bytes of data at
Calldata address 0 to the top of the stack. Subsequent DIVs consume the top two
elements of the stack and are used to obtain function selectors. Then the AND
instruction consumes 2 more elements on the top of the stack to ensure that the
4-byte function selector is obtained. After execution, the top of the stack is a 4-byte
function selector.

65 {0x63} [c123, r53] PUSH4 0x18160ddd (dec 404098525)
66 {0x81} [c128, r58] DUP2
67 {0x14} [c129, r59] EQ
68 {0x61} [c130, r60] PUSH2 0x005b (dec 91)
69 {0x57} [c133, r63] JUMPI

0x18160ddd is the function signature of totalSupply (). Compare the current
function selector with 0x18160ddd. If they are equal, skip to 0x5b. Note r91, the
function wrapper of totalSupply().

70 {0x80} [c134, r64] DUP1
71 {0x63} [c135, r65] PUSH4 0x70a08231 (dec 1889567281)
72 {0x14} [c140, r70] EQ
73 {0x61} [c141, r71] PUSH2 0x0082 (dec 130)
74 {0x57} [c144, r74] JUMPI

6.4 Deconstruct Smart Contract 189

0x70a08231 is the function signature of balanceOf (). Compare the current
function selector with 0x70a08231. If they are equal, skip to 0x82. Note r130, the
function wrapper of balanceOf().

75 {0x80} [c145, r75] DUP1
76 {0x63} [c146, r76] PUSH4 0xa9059cbb (dec 2835717307)
77 {0x14} [c151, r81] EQ
78 {0x61} [c152, r82] PUSH2 0x00b0 (dec 176)
79 {0x57} [c155, r85] JUMPI

0xa9059cbb is the function signature of transfer (). Compare the current function
selector with 0xa9059cbb. If they are equal, jump to 0xb0. Note r176, the function
wrapper of transfer().

80 {0x5b} [c156, r86] JUMPDEST
81 {0x60} [c157, r87] PUSH1 0x00 (dec 0)
82 {0x80} [c159, r89] DUP1
83 {0xfd} [c160, r90] REVERT

If the current function selector cannot find a matching function, fall back to
REVERT.

6.4.2.4 Function Wrapper

84 {0x5b} [c161, r91] JUMPDEST
85 {0x34} [c162, r92] CALLVALUE
86 {0x80} [c163, r93] DUP1
87 {0x15} [c164, r94] ISZERO
88 {0x61} [c165, r95] PUSH2 0x0067 (dec 103)
89 {0x57} [c168, r98] JUMPI
90 {0x60} [c169, r99] PUSH1 0x00 (dec 0)
91 {0x80} [c171, r101] DUP1
92 {0xfd} [c172, r102] REVERT

This is the Payable check. Because the totalSupply () function does not have a
payable modifier, if there is ether, the function will REVERT, otherwise jump to
0x0067 (r103) to execute the function body. This is a general pattern of the Solidity
compiler: check all functions without the Payable modifier for ether.

190 6 Operation Principles of Smart Contract

93 {0x5b} [c173, r103] JUMPDEST
94 {0x50} [c174, r104] POP
95 {0x61} [c175, r105] PUSH2 0x0070 (dec 112)
96 {0x61} [c178, r108] PUSH2 0x00f5 (dec 245)
97 {0x56} [c181, r111] JUMP

Here, decimal numbers 112 and 245 are pushed to the stack, and JUMP will jump
directly to r245 to execute the function body (see Sect. 6.4.3.1). Meanwhile, the top
of the stack is 112, which indicates that the execution of r112 is continued after the
execution of the function body is completed.

98 {0x5b} [c182, r112] JUMPDEST
99 {0x60} [c183, r113] PUSH1 0x40 (dec 64)
100 {0x80} [c185, r115] DUP1
101 {0x51} [c186, r116] MLOAD

The free memory pointer is imported into the stack, and the status of the stack is
{0x80, 0x40, totalSupply, func selector}

102 {0x91} [c187, r117] SWAP2
// after execution { totalSupply, 0x40, 0x80,func selector}
103 {0x82} [c188, r118] DUP3
// after execution { 0x80, totalSupply, 0x40, 0x80, func selector}
104 {0x52} [c189, r119] MSTORE // Store totalSupply at address 0x80
105 {0x51} [c190, r120] MLOAD
106 {0x90} [c191, r121] SWAP1
107 {0x81} [c192, r122] DUP2
108 {0x90} [c193, r123] SWAP1
109 {0x03} [c194, r124] SUB
110 {0x60} [c195, r125] PUSH1 0x20 (dec 32)
111 {0x01} [c197, r127] ADD
112 {0x90} [c198, r128] SWAP1
113 {0xf3} [c199, r129] RETURN

The totalSupply() function ends here. The Solmap disassembly of this paragraph
is a little difficult to understand. Let us take a look at the corresponding Remix
program:

117 DUP1
118 DUP3
119 DUP2
120 MSTORE

6.4 Deconstruct Smart Contract 191

Store the value of initialSupply at the free memory pointer 0x80

121 PUSH1 20
123 ADD
124 SWAP2
125 POP
126 POP
127 PUSH1 40
129 MLOAD
130 DUP1
131 SWAP2
132 SUB
133 SWAP1
134 RETURN

Before executing the RETURN instruction, the stack status is
{0x80,0x20,0x18160ddd}. Because initialSupply has been placed in memory
address 0x80, the value returned is 0x80-initialsupply.

114 {0x5b} [c200, r130] JUMPDEST
115 {0x34} [c201, r131] CALLVALUE
116 {0x80} [c202, r132] DUP1
117 {0x15} [c203, r133] ISZERO
118 {0x61} [c204, r134] PUSH2 0x008e (dec 142)
119 {0x57} [c207, r137] JUMPI
120 {0x60} [c208, r138] PUSH1 0x00 (dec 0)
121 {0x80} [c210, r140] DUP1
122 {0xfd} [c211, r141] REVERT
123 {0x5b} [c212, r142] JUMPDEST
124 {0x50} [c213, r143] POP
125 {0x61} [c214, r144] PUSH2 0x0070 (dec 112)
126 {0x73} [c217, r147] PUSH20 0xfffffffffffffffffffffffffffff
fffffffffff (dec 1.461501637330903e+48)
127 {0x60} [c238, r168] PUSH1 0x04 (dec 4)
128 {0x35} [c240, r170] CALLDATALOAD
129 {0x16} [c241, r171] AND
130 {0x61} [c242, r172] PUSH2 0x00fb (dec 251)
131 {0x56} [c245, r175] JUMP

The balanceOf () function ends here.

132 {0x5b} [c246, r176] JUMPDEST
133 {0x34} [c247, r177] CALLVALUE
134 {0x80} [c248, r178] DUP1
135 {0x15} [c249, r179] ISZERO

(continued)

192 6 Operation Principles of Smart Contract

136 {0x61} [c250, r180] PUSH2 0x00bc (dec 188)
137 {0x57} [c253, r183] JUMPI
. . .
165 {0x03} [c309, r239] SUB
166 {0x60} [c310, r240] PUSH1 0x20 (dec 32)
167 {0x01} [c312, r242] ADD
168 {0x90} [c313, r243] SWAP1
169 {0xf3} [c314, r244] RETURN

The transfer() function ends here.

6.4.3 Contract Bodies

The following is the assembly code implemented by each function body. The
following only deconstructs smart contracts, and does not discuss the assembly
implementation of functions. But please pay attention to how the parameters are
passed in and how the return value is passed back.

6.4.3.1 Body of the Function totalSupply()

170 {0x5b} [c315, r245] JUMPDEST
171 {0x60} [c316, r246] PUSH1 0x00 (dec 0)
172 {0x54} [c318, r248] SLOAD
173 {0x90} [c319, r249] SWAP1
174 {0x56} [c320, r250] JUMP

As previously analyzed, the value of _totalSupply is stored in Storage 0. SLOAD
is to place the value of _totalSupply on the top of the stack {_totalSupply value,
r112}. After SWAP1, the stack becomes {r112, _totalSupply value}. The last JUMP
jumps back to r112 for execution (Fig. 6.6).

You can see it clearly from Remix:
In the figure above, 0x18160ddd is the function selector, and 0x71 is the return

address 113, which indicates that jump back to r113.

6.4.3.2 Body of the Function balanceOf()

Below is an assembly implementation of the balanceOf () function. It should be easy
to understand the logic through Remix.

6.4 Deconstruct Smart Contract 193

175 {0x5b} [c321, r251] JUMPDEST
176 {0x73} [c322, r252] PUSH20 0xffffffffffffffffffffffffffffff
ffffffffff (dec 1.461501637330903e+48)
177 {0x16} [c343, r273] AND
178 {0x60} [c344, r274] PUSH1 0x00 (dec 0)
179 {0x90} [c346, r276] SWAP1
180 {0x81} [c347, r277] DUP2
181 {0x52} [c348, r278] MSTORE
182 {0x60} [c349, r279] PUSH1 0x01 (dec 1)
183 {0x60} [c351, r281] PUSH1 0x20 (dec 32)
184 {0x52} [c353, r283] MSTORE
185 {0x60} [c354, r284] PUSH1 0x40 (dec 64)
186 {0x90} [c356, r286] SWAP1
187 {0x20} [c357, r287] SHA3
188 {0x54} [c358, r288] SLOAD
189 {0x90} [c359, r289] SWAP1
190 {0x56} [c360, r290] JUMP

Fig. 6.6 JUMP opcode to go back

194 6 Operation Principles of Smart Contract

6.4.3.3 Body of the Function transfer()

Below is an assembly implementation of the transfer() function.

191 {0x5b} [c361, r291] JUMPDEST
192 {0x60} [c362, r292] PUSH1 0x00 (dec 0)
193 . . .
263 {0x50} [c488, r418] POP
264 {0x50} [c489, r419] POP
265 {0x56} [c490, r420] JUMP
266 {0x00} [c491, r421] STOP

In order to design and implement complex smart contract, we discuss advanced
topics: design patterns and GAS control. Also, we introduce assembly language just
in case user needs to implement some functionality which is not built-in by Solidity.
And to troubleshoot issues occurred in complex contract, we deconstruct a simple
contract and let reader have a first-hand understanding of working mechanism of
smart contract in Solidity. On top of it, we will present some best practices for
upgradeable contract.

6.4 Deconstruct Smart Contract 195

Chapter 7
Upgradable Contract

With the popularization of blockchain technology, most people know that data on
blockchain is untampered and immutable. This is to say, contract deployed to
blockchain is not updateable. However, in the real world, we may need to modify
contract code due to various reasons: fixing bug, modifying business logic,
upgrading functionality, etc. After years of discussion and practice, it becomes
mainstream to implement contract upgrade by using Proxy/Delegator/Dispatcher
pattern.

7.1 Solution

Generally speaking, the most popular design for an upgradeable contract can be
classified into four categories:

• Proxy contracts
• Separate logic and data
• Separate logic and data through key-value pair
• Partially upgrade

7.1.1 Proxy Contracts

The main thought of proxy contract is to call the function in target contract through
delegatecall opcode and target contract is upgradeable. Since delegatecall keeps
working on the context of caller function, the target contract code is able to update
the status of Proxy contract and keep the result in proxy contract. With the Byzantine
hard fork, now we can get the return data and its size of a function call.

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_7

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_7&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_7#DOI

7.1.2 Separate Logic and Data Contracts

The main idea is to put all contract data (variable, struct, mapping, etc.) and its
related getter and setter function into data contract; and put all business logic related
code (possibly modify contract data) into a logic contract. So, even though business
logic changes, data is still in the same location. This method allows the full upgrade
of logic contract. Contract can ask users to use new logic contract (through ENS
parser), and adjust data privilege to run getter and setter function.

7.1.3 Separate Logic and Data Through Key-Value

This method is similar to Sect. 7.1.2. The only difference is data access is abstracted
and is through key-value pair via sha256 hash algorithm and standardized naming
system.

7.1.4 Partially Upgradeable Strategies

Creating a fully upgradable contract could cause a severe trust problem: immutabil-
ity of contract. So in many situations, the partial upgradeable design is also popular.
Partial upgrade means that core functionality is not upgradeable, while other parts
are upgradeable. The following are some famous examples which take partial
upgrade strategy:

• Ethereum Name Service “ENS”:
ENS contract is a simple contract and un-changeable. Domain registration

contract is a factory contract. Domain registration can be upgraded by adminis-
trators. Registration contract for “.eth” is a factory contract. When switching to a
new domain manager, the contract is upgraded by linking to the old contract.

• 0x Project:
Decentralized Exchange contract can be upgraded completely, while keeping

proxy contract unchanged. 0x “proxy” contract contains funds and setting and
this contract is in-upgradeable since the contract needs absolute trust.

198 7 Upgradable Contract

7.1.5 Comparison

Here are simple comparisons of four upgrade strategies.

Strategies Advantages Disadvantages

Proxy contract Upgradeable contracts do not
need to be redesigned to work
with this strategy

Contract code of the proxy will
not reflect the state that it stores
Cannot change the fields of the
target contract but new fields
can be added

Separate logic and data Data can be read from the data
contract normally
The data structure that is used in
the data contract can be updated
and added to

Contracts need to be separated
into data and logic contracts
Complex data types can be
changed but in a complex way

Separate logic and data
contracts with data as a
key-value pairs

Key-value pairs are more generic
and simpler
The data structure that is used in
the data contract can be updated
and added to

Contracts need to be separated
into data and logic contracts
Accessing data is very abstract
as they are stored in key-value
pairs

Partially upgradeable con-
tract system

Leaves simple parts of the con-
tract system as immutable to
retain trust

Non-upgradeable contract code
can never be upgraded

7.1.6 Simple Proxy Contract

A proxy contract is to dispatch function calls to target contract by using delegatecall
opcode and all target contracts are upgradeable. The main idea of Proxy contract is a
storage contract, a registry contract, and an implementation contract. Whenever we
need to add new functionality or upgrade contract, we only need to develop a new
implementation contract inherited from the old contract (Fig. 7.1).

Storage contract keeps all state variables:

Fig. 7.1 Contract hierarchy

7.1 Solution 199

pragma solidity ^0.4.21;
contract Storage {

uint public val;
}

Registry contract is a proxy to implementation contract.

pragma solidity ^0.4.21;
import './Ownable.sol';
import './Storage.sol';

contract Registry is Storage, Ownable {

address public logic_contract;

function setLogicContract(address _c) public onlyOwner
returns (bool success){

logic_contract = _c;
return true;

}
function () payable public {

address target = logic_contract;
assembly {

let ptr := mload(0x40)
calldatacopy(ptr, 0, calldatasize)
let result := delegatecall(gas, target, ptr,

calldatasize, 0, 0)
let size := returndatasize
returndatacopy(ptr, 0, size)
switch result
case 0 { revert(ptr, size) }
case 1 { return(ptr, size) }

}
}

}

We could use setLogicContract to let registry contract know proxying requests to
which contract. Ownable.sol is used to ensure that only owner of the contact can call
setLogicContract. We use assembly code in fallback function which allows an
external contract to update its internal state. Please pay attention to the order of
inheritance: we must initialize storage contract first and then initialize Ownable
contract.

Then, let us have a look at the implementation contract.

200 7 Upgradable Contract

pragma solidity ^0.4.21;
import './Storage.sol';

contract LogicOne is Storage {
function setVal(uint _val) public returns (bool success) {

val = 2 * _val;
return true;

}
}

LogicOne contract is to update “val” in storage contract. Steps are as below:

1. First, deploy Registry.sol and LogicOne.sol.
2. Register LogicOne address into registry kept in Registry.sol.

Registry.at(Registry.address).setLogicContract(LogicOne.
address)

3. Through LogicOne ABI, using contract address registered in Registry, we can
update “Val” in Storage contract.

LogicOne.at(Registry.address).setVal(2)

4. When we want to upgrade contract: we first deploy LogicTwo contract and
update Registry contract, making Registry address pointing to the newest
implementation.

Registry.at(Registry.address).setLogicContract(LogicTwo.
address)

5. Now, we can use LogicTwo ABI to access storage.

LogicTwo.at(Registry.address).setVal(2)

7.1 Solution 201

7.2 Generic Proxy to Ethereum Call

We are going to introduce a more common and transparent proxy pattern based on
EVM assembly. And proxy pattern is founded on library model:

1. First, instantiate an instance of Contract A—objA.
2. Create and instantiate a light contract—ALite to call contract A. ALite and A

have the same function signature. But ALite uses callcode/delegatecall to
call objA.

This method costs some GAS:

1. Cost for using callcode/delegatecall (minimal).
2. Encode/decode parameter.

When a method is called, all parameters in msg.data are encoded based on
parameter types. So when contract A calls a method in contract B, contract B
needs to decode msg.data.

3. Since contract B has the same structure as contract A, contract B could be very
large caused by growth of contract A.

The following method based on assembly is more transparent: Proxy contract
does not need to know the function signature of the target contract. The key point is
fallback function in proxy contract: fallback function will redirect requests with msg.
data to target contract through using callcode or delegatecall.

contract proxy{
/*

Member data must has the same structure as in target
contract.

That is to say, "address add" must be at Slot 0
*/
address add;
function proxy(address a){

add = a;
}
function (){

assembly{
//gas must be uint
let g := and(gas,0xEFFFFFFF)
let o_code := mload(0x40) // Get Free

Memory Pointer
// 20bytes of Address
// sload(0) get Address at Slot 0
let addr := and(sload

(0),0xFF) //Dest address
// Get calldata (function signature

and parameter)
calldatacopy(o_code, 0,

calldatasize)

(continued)

202 7 Upgradable Contract

// Could use callcode/delegatecall/
call

let retval := call(g
,addr//Targetcontract

address
, 0 // value
, o_code //calldata
, calldatasize

//calldata size
, o_code //return

address
, 32) //32 byte return

data size

// Check return value
// 0 == if return 0 then jump to bad

destination (02)
jumpi(0x02,iszero(retval))
return(o_code,32)

}
}

}

Steps to follow:

1. Instantiate contract A at <addressA>.
2. Instantiate contract B at <addressB>, and pass <addressA> to contract B’s

constructor.
3. Use contract A’s ABI to call function at <addressB>.

Let us check it in Remix (Fig. 7.2).
First let us deploy a “complex” contract. We get the deployed address at

0x692a70d2e424a56d2c6c27aa97d1a86395877b3a. And then we pass the address
to proxy contract as the parameters of constructor. Then deploy proxy contract
(Fig. 7.3).

And map complex contract to proxy contract’s address
0xbbf289d846208c16edc8474705c748aff07732db (Fig. 7.4).

At this moment, EVM thinks the contract at
0xbbf289d846208c16edc8474705c748aff07732db is a complex contract, rather
than a proxy contract. In this situation, calling toggle function in complex contract
calls fallback function since it is a proxy contract and there is no such toggle function
in proxy contract. And fallback function calls toggle function in complex contract
through call/delegatecall (Fig. 7.5).

Calling toggle function generates a transaction on the bottom left part of screen
capture above. Click “debug” button on the right side will jump to “debugger” tab.
As can be seen, the code stops at entrance of toggle function. In this way, we can
upgrade complex contract and we do not need to modify the code to call upgraded
complex contract.

7.2 Generic Proxy to Ethereum Call 203

Fig. 7.3 Deploy proxy contract

Fig. 7.2 Deploy complex contract

204 7 Upgradable Contract

Fig. 7.5 Fallback function call toggler function

Fig. 7.4 Map complex contract to proxy contract

7.2 Generic Proxy to Ethereum Call 205

7.3 Storage

We talk about strategy to upgrade code in the previous section. But data upgrade is
not discussed yet. It might be possible that the upgraded contract cannot access data
in data contract or data in data contract is completely lost. Here the challenge is: how
to make sure that the new implementation does not overwrite state variables used by
proxy contract. There are mainly three kinds of Storage upgrade proposed by
ZepplinOS:

• Inherited Storage
• Eternal Storage
• Unstructured Storage

7.3.1 Inherited Storage

This method is to make implementation contract and proxy contract follow the same
storage structure. As the example stated in Sect. 7.1, raw contract—LogicOne is
upgraded to LogicTwo. LogicTwo inherits from LogicOne. If the storage structure
of Proxy and LogicOne does not change, upgrade can always be conducted smoothly
(Fig. 7.6).

7.3.2 Eternal Storage

In Eternal Storage pattern, Storage pattern is defined in a contract which could be
inherited by Proxy and logic contract. Storage pattern keeps all state variables. Since
proxy contract inherits from storage contract, developer can define their own state
variables in proxy contract without fear of being overwritten. And attention!!! It is
not allowed to define other state variables in logic contract. This means that logic
contract must use the initial data structure of contract.

Here is a diagram from ZepplineOS (Fig. 7.7).

Fig. 7.6 Inherited storage (https://blog.zeppelinos.org/proxy-patterns/)

206 7 Upgradable Contract

https://blog.zeppelinos.org/proxy-patterns/

Proxy Contract
Encapsulate a fallback function delegate calls to other contracts by using
Delegatecall.

Upgradeability Storage Contract
Encapsulate all data to be upgraded.

Tokenstorage Contract
Encapsulate all data related to ERC20, such as totalsupply, balance.

UpgradeabilityProxy Contract
Inherit from UpgradeabilityStorage and Proxy.

UpgradeableTokenStorage
Inherit from UpgradeabilityStorage and Tokenstorage.

TokenProxy
Inherit from UpgradeabilityProxy and Tokenstorage.

Please note that TokenProxy and UpgradeableTokenStorage must have the same
inheritance order and to keep the storage structure and order unchanged, it is not
allowed to define new state variables in logic contract. That is what Eternal means.

7.3.3 Unstructured Storage

Unstructured Storage pattern is similar to Inherited Storage pattern. And the differ-
ence is: it requires logic contract inherits state variables to be upgraded. This pattern
uses proxy contract to define and store data to be upgraded.

Fig. 7.7 Eternal storage (https://blog.zeppelinos.org/smart-contract-upgradeability-using-eternal-
storage/)

7.3 Storage 207

https://blog.zeppelinos.org/smart-contract-upgradeability-using-eternal-storage/
https://blog.zeppelinos.org/smart-contract-upgradeability-using-eternal-storage/

The main idea of this method is to define a constant variable in proxy contract.
Since the variable is a unique SHA3 hash value. And using it as the key to the storage
position and key position will not be overwritten because of enough randomness.
The benefit of the strategy is: logic contract does not need to know the storage
structure of proxy contract; and constant variable does not occupy space in storage.

bytes32 private constant implementationPosition =
keccak256("org.zeppelinos.proxy.implementation");

Full source code can be found here.1 In the following section, we will briefly
introduce how Colony and Augur projects handle contract upgrade.

The concept of proxy patterns has been around for a while, but has not received
wide adoption due to its complexity, fear of introducing security vulnerabilities, and
the controversy of bypassing blockchain’s immutability.

7.4 Augur

Augur is a decentralized predictive platform based on Ethereum technology. User
can predict and bet by using crypto currency. Depending on crowd wisdom, it can
lower counter-party risk and server centralization risk. User can use ETH to bet for
prediction, such as stock price, weather, etc. And augur can be used to hedge
disastrous risk. Its whitepaper can be found at http://www.augur.net/whitepaper.
pdf and its official web is at https://www.augur.net/.

7.4.1 Contract Deployment

Augur project source code locates at https://github.com/AugurProject/augur-core/.
In Augur, almost all contracts inherit from IControlled in which “I” indicates that it is
an interface. Controlled keeps a reference to a Controller object.

contract Controlled is IControlled {
IController internal controller;

}

1https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstructured_storage/.

208 7 Upgradable Contract

http://www.augur.net/whitepaper.pdf
http://www.augur.net/whitepaper.pdf
https://www.augur.net/
https://github.com/AugurProject/augur-core/
https://github.com/zeppelinos/labs/tree/master/upgradeability_using_unstructured_storage/

Augur design of Controller is a contract registry allowing any contract to use a
hash value to find its methods. And it allows contract to replace some methods
dynamically through re-registration.

// Note that the code has been simplified
contract Controller {

// This contract contains a function signature and contract
address

struct ContractDetails {
bytes32 name;
address contractAddress;

}
// Registry which defined a mapping from function sig to

contract details
mapping(bytes32 => ContractDetails) public registry;
// Using function sig to find contract address
function lookup(bytes32 _key) public view returns (address) {

return registry[_key].contractAddress;
}
// Contract address registration
function registerContract(bytes32 _key, address _address) {

registry[_key] = ContractDetails(_key, _address);
}

}

Steps are as below:

1. First deploy Controller contract.
2. Then deploy Augur contract and update with new Controller contract address.
3. Deploy the other contracts in turn with new Controller contract address and

register in Controller contract.

Functionality upgrade can be implemented by re-registration with new Controller
contract address.

7.4.2 Storage Deployment

Augur save some data in root contract in Singleton pattern. Other data are saved in
contracts derived by Delegator factory. Delegator contract uses DELEGATECALL
opcode delegating all function call to a contract.

7.4 Augur 209

contract Delegator is DelegationTarget {
function Delegator(IController _controller, bytes32

_controllerLookupName) public {
controller = _controller;
controllerLookupName = _controllerLookupName;

}
function() external payable {

// Find contract address through name
address _target = controller.lookup

(controllerLookupName);
// assembly { DELEGATECALL }

}
}

Some contracts are created dynamically, and each such contract has its own
factory contract.

// Assume ExampleValueObject is created and registered under
// 'ExampleValueObject' Controller
contract ExampleFactory is Controlled {

function createExample() external returns
(IExampleValueObject) {

Delegator d = new Delegator(controller,
'ExampleValueObject');

IExampleValueObject exampleValueObject =
IExampleValueObject(d);

exampleValueObject.initialize();
return exampleValueObject;

}
}
contract IExampleValueObject {

function initialize() external;
function get() external view returns (uint);

}
contract ExampleValueObject is DelegationTarget,
IExampleValueObject {

uint private value;
function initialize() external {

value = uint(42);
}
function get() external view returns (uint) {

return value;
}

}-

Singleton contracts are registered twice in the controller: the first being an
instance of the contract and the second being an instance of a Delegator registered
under the original name and pointing to the first instance. In this way, the Delegator

210 7 Upgradable Contract

instance is the place of storage for the contract, while the actual contract is registered
separately and can be swapped out for different behaviors.

7.5 Colony

Colony is a platform for creating decentralized organizations. The code has been
made public on Github under the colonyNetwork project. The project history began
in early 2016. Colony consists of about 14 smart contracts. The smart contracts use
the EtherRouter pattern to upgrade contracts. Conceptually, these contracts can be
divided into those that concern the Colony Network as a whole, and those that
concern an individual Colony. Concretely, all contracts inherit from either the
ColonyNetworkStorage or the ColonyStorage contracts. The
ColonyNetworkStorage and ColonyStorage contracts store all state variables for
their respective descendants.

Each group of contracts has a Resolver instance in which they are all registered.
The Resolver acts as a function registry. An EtherRouter is bound to a Resolver and
looks up function addresses to what it delegates to. In this way, an EtherRouter will
take on all the functions in a Resolver and the shape of the registered contracts.

contract Resolver is DSAuth {
struct Pointer { address destination; uint outsize; }
mapping (bytes4 => Pointer) public pointers;
function register(string signature, address destination, uint

outsize) public auth {
pointers[stringToSig(signature)] = Pointer(destination,

outsize);
}
function lookup(bytes4 sig) public view returns(address, uint) {

return (destination(sig), outsize(sig));
}

}

7.5.1 Contract Deployment

1. First, deploy Colony Network contract:

• ColonyNetwork
• ColonyNetworkStaking
• EtherRouter
• Resolver

7.5 Colony 211

2. Register ColonyNetwork and ColonyNetworkStaking in Resolver contract.
3. As the entry point to Colony Network, EtherRouter is pointed to Resolver.
4. Deploy Colony contract.

• Colony
• ColonyTask
• ColonyFunding
• ColonyTransactionReviewer

5. Create a new Resolver contract and register all contracts in step 4.
6. The new Resolver is added to Colony Network.

7.5.2 Storage

The first deployed EtherRouter becomes the entry point for the platform and will
take on the storage shape and behavior of the contracts in the first Resolver. The first
resolver contains the Colony Network contracts and will therefore have the same
shape as ColonyNetworkStorage. The Colony Network creates new colonies by
creating new EtherRouter instances pointing to the latest version of the Resolvers.
Each Colony can upgrade their contract versions independently.

7.6 Summary

Let us summarize all we learned. Contract upgrade is complex and developers must
take the following topics into consideration:

• Block GAS Limit
Contract upgrade involves complex operations: deploying contract, moving

data and reference etc., so it will cost a huge amount of GAS. Since the block has
GAS upper-bound (Homestead’s upper limit is 4,712,388), we should be very
careful of upgrade failure derived by exceeding GAS limit.

• Inter-dependency between contract
Usually, a complex application needs to deploy a series of contract. Replacing

one or several contracts of them must take their inter-dependency into account.

Smart Contract Upgrade
• Separate smart contract into several related contracts

Save related contract address into a contract registry and in this way, code
upgrade becomes simple since developer only needs to replace old contract
address with new contract address. This kind of upgrade strategy is common.
The drawback is that the interface cannot change. So adding new function and
deleting function are not allowed.

• Use Delegatecall to delegate the call to external contract

212 7 Upgradable Contract

In this way, callee is working under caller’s context, which means msg.sender
and msg.value do not change. And developer must use assembly code to get the
return value of such call.

– Using the method described in Sect. 7.5 can save return value into a Mapping.
The downside is that return value is strongly bounded to function signature.

That is, this method cannot handle dynamic return array or string. Further-
more, GAS used to access storage is expensive.

– To handle the above problem, developer can force a call to return 32 bytes
only. And we do not need access storage anymore.

– Use new opcodes: reslultdatasize and resultdatacopy.
Since Byzantine hard fork at Oct 17th 2017, developers now can use two

new opcodes: resultdatasize and resultdatacopy to copy return value of call/
delegatecall to memory. This means that developers now can get return value
regardless of whatever the return value is

• Pay attention to GAS usage
Test shows that GAS usage will increase about 1000–1500 in average.

• Perform comprehensive test before official upgrade.

Upgrade Storage
Storage upgrade can be: Inherited Storage, Eternal Storage and Unstructured
Storage.

In next chapter, we will discuss about how to develop secure contract and
recommend best practices.

7.6 Summary 213

Chapter 8
Develop Secure Contract

Nowadays, the security of smart contract is facing huge challenges:

• Smart contract deployed on Ethereum is publicly accessible and transparent.
Developing smart contract needs a completely new thinking vector which is

different from prior projects development.
• The disastrous consequence of vulnerability of smart contract.

Smart contract usually manages a huge amount of fund. Due to its inherent
feature of transparency and public accessibility, fixing the bug of smart contract is
not as easy as traditional software patching.

In this section, we start from well-known vulnerability and attack, analyze the
source code to identify the root cause and the recommended preventive strategy. We
also recommend best practices in developing smart contract in using Solidity. And it
must be realized that smart contract attack and defense are a dynamic, ever-changing
process. There is no such myth that one solution can solve all problems.

In this chapter, we just discuss some well-known attacks and we do not promise
to cover all the vulnerabilities. The new vulnerability is usually listed on the
following sources. Official notice of Ethereum or Solidity is from Ethereum Blog.
But it is often that the new vulnerability is disclosed and discussed in other places.1

• Ethereum Blog: The official Ethereum blog

– Ethereum Blog—Security only: All relate blogs are tagged with Security

• Ethereum Gitter Chat room

– Solidity
– Go-Ethereum
– CPP-Ethereum
– Research

1https://github.com/sigp/solidity-security-blog#race-conditions.

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_8

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_8&domain=pdf
https://github.com/sigp/solidity-security-blog#race-conditions
https://doi.org/10.1007/978-981-15-6218-1_8#DOI

• Reddit
• Network Stats

8.1 History

In May of 2016, Peter Vessenes analyzed a sample of smart contracts published
online to evaluate their complexity and security. His conclusion: “Ethereum con-
tracts are going to be candy for hackers.” This observation was prescient, as just
1 month later The DAO hack occurred, resulting in the loss of 3.6 million Ether.

In the coming months, more vulnerabilities were uncovered as the community
became increasingly concerned with smart contract security. In Devcon2—which
was held in September of 2016—smart contracts were still riddled with poor
programming practices. That year, roughly 50% of projects holding significant
amounts of funds were hacked.

In September of 2016, OpenZeppelin starts to help standardize best practices for
smart contract development. Today, more than $1.5 billion of digital assets are
powered by OpenZeppelin smart contracts.

While a community effort around smart contract audits and security is started, the
Ethereum platform itself has also matured. We have seen the introduction of ERC20
tokens which have improved interoperability, along with security fixes like EIP150,
which removed the possibility of a call stack attack. Solidity implemented new
keywords such as require, assert, transfer, and revert, all of which reduced the
difficulty of building secure smart contracts.

8.2 Attacking Vector

Attacking vectors are classified as below:

• Solidity related
• Platform: timestamp, random, Front running
• Reentrancy
• Denial of Service (DoS)

8.2.1 Solidity Related

8.2.1.1 Overflow/Underflow

When an operation needs to use a fixed-size variable to save a digital number, if the
number is outside the range of variable type, it will lead to overflow/underflow.

216 8 Develop Secure Contract

Solidity could process 256-bit integer. So 2256–1 (which is a big integer) plus 1 will
be 0. This is called overflow.

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+ 0x000000000000000000000000000000000001
--
= 0x000000000000000000000000000000000000

If unsigned integer is used, then 0 minus 1 will get the largest integer in solidity.
And this is called underflow.

0x000000000000000000000000000000000000
- 0x000000000000000000000000000000000001
--
= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Ethereum Virtual Machine (EVM) assigns fixed size to variables of integer type,
which means that an integer variable has its range. If inadvertently, programmers do
not check input or variable value underflow/overflow in the calculation process, then
this vulnerability can be utilized to attack contract. These kinds of vulnerabilities
allow attackers to misuse code and create unexpected logic flows. For example,
consider the time locking contract below.

contract TimeLock {
mapping(address => uint) public balances;
mapping(address => uint) public lockTime;

function deposit() public payable {
balances[msg.sender] += msg.value;
lockTime[msg.sender] = now + 1 weeks;

}

function increaseLockTime(uint _secondsToIncrease) public {
lockTime[msg.sender] += _secondsToIncrease;

}

function withdraw() public {
require(balances[msg.sender] > 0);
require(now > lockTime[msg.sender]);
msg.sender.transfer(balances[msg.sender]);
balances[msg.sender] = 0;

}
}

8.2 Attacking Vector 217

This contract allows user to deposit ether and user to expect the fund to be locked
in contract for a certain period (1 week at least). And the user can extend the lock
period. Does the above code achieve the functions the user expect? If attackers
somehow have the private key of a user, they can determine the current lock time
since userLockerTime is a public variable. Attackers can call increaseLockTime
function with 2256 as a parameter and it will cause an overflow. lockTime[msg.
sender] is set to zero and attackers get rewarded by calling withdraw function.

Let us have a look at the new example:

pragma solidity ^0.4.18;
contract Token {

mapping(address => uint) balances;
uint public totalSupply;
function Token(uint _initialSupply) {

balances[msg.sender] = totalSupply = _initialSupply;
}
function transfer(address _to, uint _value) public returns

(bool) {
require(balances[msg.sender] - _value >= 0);
balances[msg.sender] -= _value;
balances[_to] += _value;
return true;

}
function balanceOf(address _owner) public constant returns

(uint balance) {
return balances[_owner];

}
}

Above contract is a simple token contract in which participants can employ
transfer() function to move their token around. In transfer() function, require state-
ment can be bypassed under the situation of underflow. For example, assume that a
user has no balance; the user could call the transfer() function with any non-zero
_value and pass the require statement. The reason is: balances[msg.sender] is zero,
and subtracting any positive amount (excluding 2256) will result in a positive number
due to the underflow described above. Thus, in this example, the user has obtained
free tokens caused by an underflow vulnerability.

The typical technique to guard against under/overflow vulnerabilities is to use or
build mathematical libraries which replace the solidity standard math operators;
addition, subtraction, and multiplication (division is excluded as it does not cause
over/under flows and the EVM throws on division by 0). OpenZepplin provides a
well-known and widely accepted implementation of Safe Math. We use
OpenZepplin safe math library to rewrite the timelock contract as below:

218 8 Develop Secure Contract

library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns

(uint256) {
if (a == 0) {
return 0;

}
uint256 c = a * b;
assert(c / a == b);
return c;

}
function div(uint256 a, uint256 b) internal pure returns

(uint256) {
// assert(b > 0); // Solidity automatically throws when dividing

by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this

doesn't hold
return c;

}
function sub(uint256 a, uint256 b) internal pure returns

(uint256) {
assert(b <= a);
return a - b;

}
function add(uint256 a, uint256 b) internal pure returns

(uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}
}
contract TimeLock {

using SafeMath for uint; // use the library for uint type
mapping(address => uint256) public balances;
mapping(address => uint256) public lockTime;

function deposit() public payable {
balances[msg.sender] = balances[msg.sender].add(msg.

value);
lockTime[msg.sender] = now.add(1 weeks);

}

function increaseLockTime(uint256 _secondsToIncrease) public {
lockTime[msg.sender] = lockTime[msg.sender].add

(_secondsToIncrease);
}

function withdraw() public {
require(balances[msg.sender] > 0);

(continued)

8.2 Attacking Vector 219

require(now > lockTime[msg.sender]);
balances[msg.sender] = 0;
msg.sender.transfer(balances[msg.sender]);

}
}

Please note that all standard mathematics operators are replaced with functions in
Safe Math library.

8.2.1.2 Solidity Modifier

Public function can be called from the contract itself, inherited contract, and other
contracts.

External function cannot be called by the member functions of the contract itself.
Private function can be called only by the member functions of the contract itself.
Internal functions can be called by the functions of the contract itself and

inherited contract.
Delegate Call is a message call. And callee contract code is running in the context

of caller contract. That means callee contract code can work on storage, balance, and
current address of caller contract. In the following example, attacker gets the control
of caller contract (Delegation) through delegating call to public PWN function of
Delegate under the context of caller contract.

pragma solidity ^0.4.11;
contract Delegate {

address public owner;
function Delegate(address _owner) {

owner = _owner;
}
function pwn() {

owner = msg.sender;
}

}
contract Delegation {

address public owner;
Delegate delegate;
function Delegation(address _delegateAddress) {

delegate = Delegate(_delegateAddress);
owner = msg.sender;

}
// an attacker can call Delegate.pwn() in the context of Delegation
// this means that pwn() will modify the state of **Delegation**

and not Delegate
// the result is that the attacker takes unauthorized ownership of

(continued)

220 8 Develop Secure Contract

the contract
function() {

if(delegate.delegatecall(msg.data)) {
this;

}
}

}

The contract above opens a backdoor for hackers. Code flow is as below:

1. Attacker sends call––Delegation.PWN()
2. Code execution falls into the fallback function of Delegation since there is no

PWN function in Delegation contract
3. In fallback function, delegatecall sends call to Delegate contract
4. Attacker manipulates msg.data which contains the function signature to be called.

In this case, assume that attacker stuff pwn’s signature into msg.data
msg.data ¼ first 8 bytes of sha3 (alias for keccak256)

web3.sha3("pwn()").slice(0, 10) --> 0xdd365b8b

// if pwn function has a parameter such as pwn(uint256 x):
web3.sha3("pwn(uint256)").slice(0,10) --> 0x35f4581b

5. PWN function in Delegate is called and owner of Delegation will be changed
since PWN works in the context of Delegation.

The main problem here is a combination of insecure visibility modifiers and
misuse of delegate call with arbitrary data.

8.2.1.3 Floating Points and Precision

Solidity does not support fix-point numbers and float point numbers until
version 0.4.24. That is to say, we must use integers to present float numbers,
which may lead to vulnerability if the contract is not implemented correctly. Here
is an example (in order for easy understanding, please ignore the over/under flow
vulnerability).

contract FunWithNumbers {
uint constant public tokensPerEth = 10;
uint constant public weiPerEth = 1e18;
mapping(address => uint) public balances;

(continued)

8.2 Attacking Vector 221

function buyTokens() public payable {
uint tokens = msg.value/weiPerEth*tokensPerEth; // convert

wei to eth, then multiply by token rate
balances[msg.sender] += tokens;

}
function sellTokens(uint tokens) public {

require(balances[msg.sender] >= tokens);
uint eth = tokens/tokensPerEth;
balances[msg.sender] -= tokens;
msg.sender.transfer(eth*weiPerEth); //

}
}

This simple token buy/sell contract has some obvious problems. Although the
calculation formula is correct, incorrect support of float point number leads to an
unexpected result. For example: in buyTokens function, if the amount to buy is less
than 1 ether, then the result of msg.value/weiPerEth will be 0. And the final result
will also be 0. By the same token, in sellTokens function, if the amount to sell is less
than 10, the final result will be 0. In fact, rounding here is always down, so selling
36 tokens will result in 3 ether. If high precision is needed in ERC20 contract,
situation will become more complex.

To avoid such problem, the general principle is always to keep the right precision
in your smart contracts, especially when dealing with ratios and rates which reflect
economic decisions.

• ensure that any ratios or rates allow for large numerators in fractions.
• be mindful of the order of operations.
• convert variables into higher precision, perform all mathematical operations, then

finally when needed, convert back down to the precision for output.

8.2.1.4 Tx.Origin Authentication

Solidity has a global variable––tx.origin which trace calling stack back to initiator’s
address. Using this variable to do user authentication may incur phishing attack
which allure user to execute some operations requiring authorization. Let us have a
look a simple contract below:

contract Phishable {
address public owner;
constructor (address _owner) {

owner = _owner;
}
function () public payable {} // collect ether

(continued)

222 8 Develop Secure Contract

function withdrawAll(address _recipient) public {
require(tx.origin == owner);
_recipient.transfer(this.balance);

}
}

Notice that tx.origin is used in function withdrawAll(). Here is a contract created
by the attacker.

import "Phishable.sol";
contract AttackContract {

Phishable phishableContract;
address attacker; // The attackers address to receive funds.
constructor (Phishable _phishableContract, address

_attackerAddress) {
phishableContract = _phishableContract;
attacker = _attackerAddress;

}
function () {

phishableContract.withdrawAll(attacker);
}

}

Here we describe how to utilize this contract:

1. Attacker would deploy AttackContract
Attacker convinces the owner of the Phishable contract to send AttackContract

some amount of ether.
2. Disguise this contract as their own private address and convince engineer the

victim to send some form of transaction to the address.
The victim, unless being careful, may not notice that there is code at the

attacker’s address, or the attacker may pass it off as being a multi-signature wallet
or some advanced storage wallet.

3. The victim sends a transaction (with enough gas) to the AttackContract address,
4. Invoke the fallback function,
5. Calls the withdrawAll() function of the Phishable contract, with the parameter

attacker.

This will result in the withdrawal of all funds from the Phishablecontract to the
attacker address. This is because the address that first initializes the call is the victim
(i.e. the owner of the Phishable contract). Therefore, tx.origin will be equal to the
owner and the require statement of the Phishable contract will pass.

Therefore, keep in mind, tx.origin should not be used for authorization in smart
contracts.

8.2 Attacking Vector 223

8.2.1.5 Unchecked CALL Return Values

Usually, we need to call external contracts, such as using transfer(), or send(), or
CALL opcode to send ether. The call() and send() functions return a boolean
indicating if the call succeeds or fails. This will lead to a simple caveat: if the
external call fails, solidity only returns a flag and will not rollback. So, the developer
needs to revert manually in such situations, or it looks like a shark smelling blood.
Let us have a look at the following example:

contract Lotto {
bool public payedOut = false;
address public winner;
uint public winAmount;

// ... extra functionality here
function sendToWinner() public {

require(!payedOut);
winner.send(winAmount);
payedOut = true;

}

function withdrawLeftOver() public {
require(payedOut);
msg.sender.send(this.balance);

}
}

The contract is a lottery program and the winner can win a certain amount of
ether. The problem of the contract is that the contract does not verify the return value
of send(). If winner transaction fails (possibly caused by out of GAS, or call stack
depth attack), payedOut will be set to true (regardless of whether ether was sent or
not). In this case, the public can withdraw the winner’s winnings via the
withdrawLeftOver() function.

Whenever possible, using the transfer() function rather than send() as transfer()
will revert if the external transaction reverts. If send() is required, always ensure to
check the return value. An even more robust recommendation is to adopt a with-
drawal pattern. The idea is to logically isolate the external send functionality from
the rest of the code base and place the burden of potentially failed transaction to the
end user who is calling the withdraw function. The real-world attack details can be
found here.2

2https://github.com/etherpot.

224 8 Develop Secure Contract

https://github.com/etherpot

8.2.1.6 Unexpected Ether

Each contract has a balance variable which can be used as [contract address].balance.
Most of the cases, the variable can be updated by function with a payable modifier.
There are two special cases that the developer can manipulate the ether in the
contract.

Usually, we do invariant-checking in solidity programming. For example, in
standard ERC20 contract, totalSupply is supposed to be invariant. From an
unexperienced developer’s point of view, there is one apparent invariant––the
current balance the contract hold. Developers have a misconception that a contract
can only accept or obtain ether via payable functions. The typical case of this
misconception is the incorrect use of this.balance.

There are two cases that can send ether to a contract forcibly without using the
payable function:

SelfDestruct/Suicide
Selfdestruct (address) function will delete all binary code in contract address and
send ether to an address specified by the parameter. If selfdestruct() forcibly sends
ether to a contract address, it will not go through any payable function (even fallback
function) in target contract.

Pre-sent Ether
Another way to send ether bypassing payable function is to pre-load the contract
address with ether. Contract addresses are deterministic, in fact, the address is
calculated from the hash of the address creating the contract and the transaction
nonce which creates the contract.

address = sha3(rlp.encode([account_address,transaction_nonce]))

This is to say, anyone can calculate what a contract address will be before it is
created and thus send ether to that address. When the contract does get created, it will
have a non-zero ether balance.

Let us have a look at the following contract and see how to utilize the
vulnerability:

contract EtherGame {
uint public payoutMileStone1 = 3 ether;
uint public mileStone1Reward = 2 ether;
uint public payoutMileStone2 = 5 ether;
uint public mileStone2Reward = 3 ether;
uint public finalMileStone = 10 ether;
uint public finalReward = 5 ether;
mapping(address => uint) redeemableEther;
// users pay 0.5 ether. At specific milestones, credit their

accounts

(continued)

8.2 Attacking Vector 225

function play() public payable {
require(msg.value == 0.5 ether); // each play is 0.5 ether
uint currentBalance = this.balance + msg.value;
// ensure no players after the game as finished
require(currentBalance <= finalMileStone);
// if at a milestone credit the players account
if (currentBalance == payoutMileStone1) {

redeemableEther[msg.sender] += mileStone1Reward;
}
else if (currentBalance == payoutMileStone2) {

redeemableEther[msg.sender] += mileStone2Reward;
}
else if (currentBalance == finalMileStone) {

redeemableEther[msg.sender] += finalReward;
}
return;

}
function claimReward() public {

// ensure the game is complete
require(this.balance == finalMileStone);
// ensure there is a reward to give
require(redeemableEther[msg.sender] > 0);
redeemableEther[msg.sender] = 0;
msg.sender.transfer(redeemableEther[msg.sender]);

}
}

This contract is just a simple game whereby players send 0.5 ether quanta to the
contract in hope to be the player that reaches one of three milestones
(payoutMileStone1, payoutMileStone2, finalMileStone) first. Milestones are
denominated in ether. The first to reach the milestone may claim a portion of the
ether when the game has ended. The game ends when the final milestone (10 ether) is
reached and users can claim their rewards.

. . .
uint currentBalance = this.balance + msg.value;

// ensure no players after the game as finished
require(currentBalance <= finalMileStone);

. . .
require(this.balance == finalMileStone);

. . .

The issues with the EtherGame contract come from the poor use of this.balance.
An attacker could:

1. Deploy a contract containing selfdetruct() function which forcibly sends the
balance held by the contract to EtherGame contract.

2. Send 0.1ether to the contract. If succeed, the contract current hold 0.1ether.

226 8 Develop Secure Contract

3. Call selfdetruct() and it will send current balance—0.1ether to EtherGame. And it
does not hit any payable functions in EtherGame.

As all legitimate players can only send 0.5 ether increments, once EtherGame
receives 0.1 ether, this.balance would not be half integer numbers any more. This
means that all milestones will not be reached.

. . .
// if at a milestone credit the players account
if (currentBalance == payoutMileStone1) {

redeemableEther[msg.sender] += mileStone1Reward;
}
else if (currentBalance == payoutMileStone2) {

redeemableEther[msg.sender] += mileStone2Reward;
}
else if (currentBalance == finalMileStone) {

redeemableEther[msg.sender] += finalReward;
}
. . .

A more aggressive case is: a vengeful attacker may forcibly send 10 ether (or an
equivalent amount of ether that pushes the contract’s balance above the
finalMileStone) to EtherGame contract. And it will lock all rewards in the contract
forever since claimReward() function will always revert caused by the require
statement.

// ensure the game is complete
require(this.balance == finalMileStone);

This vulnerability typically arises from the misuse of this.balance. The lesson
learned is: Contract logic should avoid being dependent on exact values of the
balance of the contract because it can be artificially manipulated. If you definitely
need exact values of deposited ether, a self-defined variable should be used that gets
incremented in payable functions, to safely track the deposited ether. This variable
will not be influenced by the forced ether sent via a selfdestruct() call.

8.2.2 Platform Related Attack

Solidity code is compiled into EVM opcode (which is defined in Ethereum Yellow
Paper). In this section, we are going to discuss vulnerabilities related to Ethereum
Virtual Machine.

8.2 Attacking Vector 227

8.2.2.1 Platform Constraint

EVM has a lot of constraints due to the security design of the platform. Since
constraints are platform-wise, unawareness of such constraints may put your contract
in danger. Let us check an example of bonus calculation.

// UNSAFE CODE, DO NOT USE!
contract BadArrayUse {

address[] employees;
function payBonus() {
for (var i = 0; i < employees.length; i++) {
address employee = employees[i];
uint bonus = calculateBonus(employee);
employee.send(bonus);

}
}
function calculateBonus(address employee) returns (uint) {
// some expensive computation ...

}
}

Coding logic above is straightforward and seems safe and secure. But because of
the platform-based special features, there are three timing bombs:

Infinite Loop
Because of the type inference rule of solidity, the type of i will be—uint8. Since the
first use of i is to save 0 to i, and solidity will automatically pick the smallest
appropriate type (which will be uint8) for i based on solidity type inference rule. So,
if the array has more than 255 elements, the loop will never stop, which will lead to
exhaustion of GAS in the end. Lesson learned here is: try to use explicit type instead
of var. Let us see an improved version as below:

// UNSAFE CODE, DO NOT USE!
contract BadArrayUse {

address[] employees;
function payBonus() {
for (uint i = 0; i < employees.length; i++) {

address employee = employees[i];
uint bonus = calculateBonus(employee);
employee.send(bonus);

}
}
function calculateBonus(address employee) returns (uint) {
// some expensive computation ...

}
}

228 8 Develop Secure Contract

GAS Limitation
Since Ethereum is a world computer, any state change function call will cost lots of
resources. GAS is a mechanism to charge fees for resource use. If calculateBonus
has some complex calculation, the function will cost lots of GAS which is likely to
exceed the upper limit of GAS usage of transaction or block. If a transaction does
exceed the GAS limit, all state changes will be reverted; but GAS spent will not be
refunded. So, please pay attention to GAS usage if loop is used in contract program-
ming. Let us optimize the code above: separate calculation from loop. Please note
that the code below still has a potential risk of Exhaustion of GAS since array size
might grow bigger and bigger:

// UNSAFE CODE, DO NOT USE!
contract BadArrayUse {

address[] employees;
mapping(address => uint) bonuses;
function payBonus() {

for (uint i = 0; i < employees.length; i++) {
address employee = employees[i];
uint bonus = bonuses[employee];
employee.send(bonus);

}
}
function calculateBonus(address employee) returns (uint) {

uint bonus = 0;
// some expensive computation modifying the bonus...
bonuses[employee] = bonus;

}
}

Stack Depth Constraint
EVM call stack has a hard cap—1024, which means that function will fail if nested
call stack exceeds 1024. An attacker can recursively call our contract 1024 times and
this will lead to a send fail due to the call stack depth constraint.

Here is a final version of the contract which fixes all problems described above:

import './PullPayment.sol';
contract GoodArrayUse is PullPayment {

address[] employees;
mapping(address => uint) bonuses;
function payBonus() {

for (uint i = 0; i < employees.length; i++) {
address employee = employees[i];
uint bonus = bonuses[employee];
asyncSend(employee, bonus);

}
}

(continued)

8.2 Attacking Vector 229

function calculateBonus(address employee) returns (uint) {
uint bonus = 0;
// some expensive computation...
bonuses[employee] = bonus;

}
}

8.2.2.2 Race Conditions/Front Running

The combination of external calls to other contracts and the multi-user nature of the
underlying blockchain gives rise to a variety of potential Solidity pitfalls whereby
users race code execution to obtain unexpected states. In this section, we will discuss
generally different kinds of race conditions that can occur on the Ethereum blockchain.

Once a transaction is submitted, an Ethereum node will pool the transaction and
pack it into block in an appropriate way. Only when one miner solves the consensus
question, the miner will pick transactions in the pool and pack them into block. Only
those transactions packed into block are considered valid. Generally, the packing order
is dependent on gasPrice. The attacker can watch the pool of transaction which can be
of interests of the attacker, such as modifying privilege or update states of contract, etc.
Attacker can get the transaction data and create a new transaction with higher gasPrice.
This will make new transaction included into block prior to the original one.

Here is a simple example showing how to conduct the attack:

contract FindThisHash {
bytes32 constant public hash = 0xb5b5b97fafd9855eec9b41f7

4dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

constructor() public payable {} // load with ether

function solve(string solution) public {
// If you can find the pre image of the hash, receive 1000

ether
require(hash == sha3(solution));
msg.sender.transfer(1000 ether);

}
}

Assume this contract holds 10,000 ether. Any user can claim the balance of the
contract (which is 10,000 ether) if the user finds the pre-image of
0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a and
submit the solution. For example, if a user finds the solution is “resolved!” and
they submit the solution through calling solve() with parameter—resolved!. If the

230 8 Develop Secure Contract

attacker is watching the pool at this time, the attacker will see the solution, and
validate it. If they believe the solution is correct, they can initiate an equivalent
transaction with higher gasPrice than that of the original transaction. Miner will
prefer to pack transaction with higher gasPrice into block. In this situation, the
attacker will get 10,000 ether, while original solution provider gets nothing (since
10,000 ether has been withdrawn by attacker).

There are two types of user who can perform such front-running attack: (1) Users
who modify the gasPrice and (2) miners themselves. A contract that is vulnerable to
the first class (users) is significantly worse-off than one vulnerable to the second
(miners) as miners can only perform the attack when they solve a block, which is
unlikely for any individual miner targeting a specific block. Here are a few mitiga-
tion measures with relation to which type of attackers they may prevent.

One method to mitigate the situation is to set the upper bound of gasPrice in
contract. This will prevent attackers from increasing gasPrice and making preferen-
tial transaction ordering. This method only mitigates the risk for the first type of user.
As to miners, since they can order the transactions in new block regardless of
gasPrice, miners still can perform front-running attack.

Another method is to use commit-reveal pattern: first, user sends a transaction
with hidden data (usually a hashed value). After the transaction is packed into a
block, user sends another transaction with solution details. In this way, miners and
other users do not know solution details, they cannot create a new transaction with
solution details to perform the front-running attack.

8.2.2.3 Uninitialized Storage Pointers

In EVM, the variable can be stored either as memory or as storage. It is
recommended to learn implementation details of data location of the variable.
Incorrect initialization of variables will lead to vulnerability.3 Depending on the
variable type, local variables are default to storage or memory. Un-initialized storage
variable could be pointed to an unknown address, which will incur attack.

Let us have a look at the following name registry contract:

// A Locked Name Registrar
contract NameRegistrar {

bool public unlocked = false; // registrar locked, no name
updates

struct NameRecord { // map hashes to addresses
bytes32 name;

(continued)

3https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-
16c2aa312743, https://medium.com/cryptronics/ethereum-smart-contract-security-73b0ede73fa8,
https://solidity.readthedocs.io/en/develop/miscellaneous.html#layout-of-state-variables-in-storage.

8.2 Attacking Vector 231

https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://medium.com/cryptronics/ethereum-smart-contract-security-73b0ede73fa8
https://solidity.readthedocs.io/en/develop/miscellaneous.html#layout-of-state-variables-in-storage

address mappedAddress;
}
mapping(address => NameRecord) public registeredNameRecord;

// records who registered names
mapping(bytes32 => address) public resolve; // resolves hashes

to addresses
function register(bytes32 _name, address _mappedAddress)

public {
// set up the new NameRecord
NameRecord newRecord;
newRecord.name = _name;
newRecord.mappedAddress = _mappedAddress;
resolve[_name] = _mappedAddress;
registeredNameRecord[msg.sender] = newRecord;
require(unlocked); // only allow registrations if contract

is unlocked
}

}

This simple name registry contract has only one function. When the contract is
unlocked, anyone is able to register a name (a bytes32 type of hash value) and map
the name to an address. This contract is initialized to “locked” status when first
deployed. Require(unlocked) statement prevents the user from adding new name
when the contract is locked. However, there is a vulnerability which allows to add
new names when the contract is locked.

To study this vulnerability, we must understand how storage variables are
arranged in solidity. Please go over Chaps. 4 and 5 if you do not understand. State
variables are stored sequentially in slots as they appear in the contract; so unlocked is
at slot 0, registeredNameRecord is at slot 1, resolve is at slot 2 . . . Each slot is
32 bytes.

Slot Variable Type Value

0 Unlocked Boolean 0000000000000000000000000000000
00000000000000000000000000000000

1 registeredNameRecord Struct

2 Resolve Mapping

As the local variable of function, newRecord is default to Storage since it is a
struct type. The vulnerability lies in that newRecord is not initialized. Because
newRecord is storage type, it becomes a pointer to storage. And since it is not
initialized, it points to slot 0 where is the place for unlocked. Next step, the function
set _name to nameRecord.name, and set _mappedAddress to nameRecord.
mappedAddress. These two assignments actually update slot 0 and slot 1, which is
the slot for unlocked and registeredNameRecord. This means that unlocked can be
updated in register() directly. So, if the last byte of _name is not zero, the last byte of
Slot 0 is changed to a non-zero value which means the unlocked value is changed to

232 8 Develop Secure Contract

true. We can try it in remix. If we pass the following value as parameter _name:
0x0001

Solidity compiler gives warnings for uninitialized variables. Developer needs to
pay attention to these warnings. And it is always a good programming habit to add
memory or storage modifier to variables explicitly.

8.2.2.4 Entropy Illusion

As described in previous chapters, all Ethereum transactions are deterministic state
transfer: each transaction updates the global state of Ethereum system and state
transfer is in the form of calculation. And theoretically, it can be formal verified.
Since everything in Ethereum is deterministic, that is to say that there is not a random
source in the whole blockchain. That is why there is no rand() function in solidity.
Currently, there are many proposals about how to obtain randomness in blockchain.
One of the most well-known proposals is RandDAO.

There are many gambling contracts/DApps built on the Ethereum platform.
Generally speaking, gambling requires uncertainty coming from a source external
to the blockchain. This is possible for bets among peers (for example, the commit-
reveal scheme proposed by RandDAO), however, if you want to implement a
contract to act as the house (like in blackjack or roulette), it is much more difficult.
A common misuse is to use future block variables, such as hashes, timestamps, block
number, or gas limit. The issue with these is that they are controlled by the miner
who mines the block and as such are not truly random. For example, a gambling
smart contract holds logic that returns black if the next block hash ends in an even
number. A miner (or miner pool) could bet $1 M on black. If they solve the next
block and find the hash ends in an odd number, they would prefer not to publish their
block and mine another until they find a solution with the block hash being an even
number. Using past or present variables can be even more devastating. Furthermore,
using solely block variables means that the pseudo-random number will be the same
for all transactions in a block, so an attacker can multiply their wins by doing many
transactions within a block (should there be a maximum bet).

Since there is no source of randomness in blockchain, the source of randomness
must be external to the blockchain. This can be done among peers with systems such
as RandDAO (commit-reveal scheme), or via changing the trust model to a group of
participants. Another popular solution is to introduce randomness source which is
called Oracle (could be centralized or decentralized). Block variables should not be
used as source entropy since they can be manipulated by miners.

8.2.2.5 Block Timestamp Manipulation

Block timestamp is used by many apps in implementing their business logic, such as
randomness source, and lock period of the fund. And many state-change conditions

8.2 Attacking Vector 233

are based on block timestamp. Since the miner is able to adjust block timestamp,
improper use of block timestamp will endanger contracts on Ethereum platform.

Miners can change block timestamp if they have enough motive. Here is a simple
example.

contract Roulette {
uint public pastBlockTime; // Forces one bet per block

constructor() public payable {} // initially fund contract

// fallback function used to make a bet
function () public payable {

require(msg.value == 10 ether); // must send 10 ether to play
require(now != pastBlockTime); // only 1 transaction per

block
pastBlockTime = now;
if(now % 15 == 0) { // winner
msg.sender.transfer(this.balance);
}

}
}

This contract is a simple lottery contract. The logic is based on the assumption
that block.timestamp is uniformly distributed about the last two digits. If the
assumption is true, there would be a 1/15 chance of winning this lottery.

However, as we know, miners can adjust the timestamp if they need to. In this
particular case, if enough ether pooled in the contract, in order to win the ether
locked in the contract along with the block reward, a miner who solves a block is
incentivized to choose a timestamp such that block.timestamp with module 15 as
0. As there is only one person allowed to bet per block, this is also vulnerable to
front-running attacks.

In the real world, miners cannot choose arbitrary block timestamps since block
timestamps are monotonically increasing. Because nodes will not validate blocks
whose timestamps are in the future, miners are also limited to setting blocktimes not
too far in the future as these blocks will likely be rejected by the network.

Block timestamps should not be used for entropy or generating random num-
bers—i.e. they should not be the deciding factor (either directly or through some
derivation) for winning a game or changing an important state (if assumed to be
random). Time-sensitive logic is sometimes required; i.e. unlocking contracts, com-
pleting an ICO after a few weeks or enforcing expiry dates. It is sometimes
recommended to use block.number and an average block time to estimate times;
i.e. 1 week with a 10 s block time, equates to approximately, 60,480 blocks. Thus,
specifying a block number at which to change a contract state can be more secure as
miners are unable to manipulate the block number as easily. The BAT ICO contract
employed this strategy. This can be unnecessary if contracts are not particularly

234 8 Develop Secure Contract

concerned with miner manipulations of the block timestamp, but it is something to
be aware of when developing contracts.

8.2.2.6 External Contract Referencing

Ethereum is a world computer. We can re-use code and interact with deployed
contracts. In fact, there are lots of contracts keeping the external reference to other
contracts and using message to interact with them. These message calls may cause
vulnerability if not properly used.

In Solidity, any address can be forced casted into contract regardless of the code
running on the address. The following code showcases the risk:

//encryption contract
contract Rot13Encryption {

event Result(string convertedString);
//rot13 encrypt a string
function rot13Encrypt (string text) public {

uint256 length = bytes(text).length;
for (var i = 0; i < length; i++) {

byte char = bytes(text)[i];
//inline assembly to modify the string
assembly {

char := byte(0,char) // get the first byte
if and(gt(char,0x6D), lt(char,0x7B)) // if the

character is in [n,z], i.e. wrapping.
{ char:= sub(0x60, sub(0x7A,char)) } // subtract from

the ascii number a by the difference char is from z.
if iszero(eq(char, 0x20)) // ignore spaces
{mstore8(add(add(text,0x20), mul(i,1)), add

(char,13))} // add 13 to char.
}

}
emit Result(text);

}
// rot13 decrypt a string
function rot13Decrypt (string text) public {

uint256 length = bytes(text).length;
for (var i = 0; i < length; i++) {

byte char = bytes(text)[i];
assembly {

char := byte(0,char)
if and(gt(char,0x60), lt(char,0x6E))
{ char:= add(0x7B, sub(char,0x61)) }
if iszero(eq(char, 0x20))
{mstore8(add(add(text,0x20), mul(i,1)), sub(char,13))}

}
}

(continued)

8.2 Attacking Vector 235

emit Result(text);
}

}

Code above accepts a string as input and (a-z) and encrypt it—shift each character
13 places to the right (wrapping around “z”). The contract below uses the encryption
function above through an external reference.

import "Rot13Encryption.sol";
// encrypt your top secret info
contract EncryptionContract {

// library for encryption
Rot13Encryption encryptionLibrary;

// constructor - initialise the library
constructor(Rot13Encryption _encryptionLibrary) {

encryptionLibrary = _encryptionLibrary;
}
function encryptPrivateData(string privateInfo) {

// potentially do some operations here
encryptionLibrary.rot13Encrypt(privateInfo);

}
}

encryptionLibrary address is neither public nor constant. So, we can pass the
following contract address to encryptionLibrary in constructor while deploying. If a
linked contract does not have rot13Encrypt function, the fallback function will be
triggered. The following is an example:

contract Blank {
event Print(string text);
function () {

emit Print("Here");
//put malicious code here and it will run

}
}

encryptionLibrary.rot13Encrypt() triggers an Event which prints text “Here.” In
principle, attackers can run any arbitrary code unknowingly.

There are multiple ways to prevent scenarios above. First, we can generate
encryption library dynamically in the constructor as below:

236 8 Develop Secure Contract

constructor() {
encryptionLibrary = new Rot13Encryption();

}

The external reference is created while deploying and there is no way to replace
the reference to Rot13Encryption. An alternative solution is to assign deployed
Rot13Encryption address to encryptionLibrary in constructor. Real-world attack
case can be found here.4

8.2.2.7 Short Address/Parameter Attack

Parameters are ABI-encoded while passed to the smart contract. If the parameter is
an address which is 20 bytes long, it is possible that the developer just passes
19 bytes long as an address. And in this case, EVM will pad 0 to the end to align
to 20 bytes. If third-party application does not validate the input parameter, this may
incur a problem. Look at following transfer function of ERC20 standard.

function transfer(address to, uint tokens) public returns (bool
success);

Assume that an ERC20 contract holds billions of tokens and a user wants to
withdraw 1000 tokens to his address––0xdeaddeaddeaddeaddeaddeaddeadd
eaddeaddead. According to ABI specification, EVM will encode the parameters
and result is like below: a9059cbb000000000000000000000000deaddeadde
addeaddeaddeaddeaddeaddeaddead00000000000000000000000000000000000000
000000003635C9ADC5DEA00000. The first 4 bytes (a9059cbb) is the function
selector of transfer(), and the next 32 bytes is an uint256 variable which is the
withdrawal amount. 3635C9ADC5DEA00000 (which is 1000,000,000,000,000,
000,000 in decimal format) represents 1000 tokens (assume the ERC20 contract
has 18 decimal).

Now, if attack pass an 19 bytes long address to transfer(), for example, attacker
pass 0xdeaddeaddeaddeaddeaddeaddeaddeaddeadde as receiver address and 1000
token, and if function does not validate input, the call will be encoded as below
a9059cbb000000000000000000000000deaddeaddeaddeaddeaddeaddeaddeaddead-
de003635C9ADC5DE-
A0000000. Please notice that 00 has been padded to the end of encoded result for

4https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_honeypot_contract_or_beaten_
by/.

8.2 Attacking Vector 237

https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_honeypot_contract_or_beaten_by/
https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_honeypot_contract_or_beaten_by/

32-byte alignment. If the encoded result is sent to contract, the address becomes
0xdeaddeaddeaddeaddeaddeaddeaddeaddeadde00, and withdrawal amount becomes
3635C9ADC5DEA0000000. Now, the withdrawal amount becomes 256,000
tokens. In this situation, if contract balance allows, the user can withdraw 256,000
tokens. In the real world, if attacker generates address with trailing 0 (This is easy
through brute-force), then they can steal tokens.

Validating all inputs before sending them to the blockchain will prevent these
kinds of attacks. And parameter ordering plays an important role here.

8.2.3 Reentrancy (THE DAO Hack)

Reentrancy is actually solidity programming related. The reason to put it into a
separate category is one of its notorious attacks—THE DAO Hack: The DAO
contract launched on 30th April, 2016, with a 28-day funding window. For whatever
reason, The DAO was popular, raising over $100 m by 15th May, and by the end of
the funding period, The DAO was the largest crowdfunding in history, having raised
over $150 m from more than 11,000 enthusiastic members. In particular, Stephan
Tual, one of The DAO’s creators, announced on 12th June that a “recursive call bug”
had been found in the software but that “no DAO funds [were] at risk” (Fig. 8.1).

Unfortunately, while programmers were working on fixing this and other prob-
lems, an unknown attacker began using this approach to start draining The DAO of
ether collected from the sale of its tokens.

By Saturday, 18th June, the attacker managed to drain more than 3.6 m ether into
a “child DAO” that has the same structure as The DAO. The price of ether dropped
from over $20 to under $13.

As the bug fix, on 17th June, Vitalik Buterin of the Ethereum Foundation issued a
critical update, saying that the DAO was under attack and that he had worked out a
solution:

Fig. 8.1 The DAO attack

238 8 Develop Secure Contract

A software fork has been proposed, (with NO ROLLBACK; no transactions or blocks will
be “reversed”) which will make any transactions that make any calls/callcodes/delegatecalls
that reduce the balance of an account with code hash0x7278d050619a624f84f51987149dd
b439cdaadfba5966f7cfaea7ad44340a4ba (i.e. the DAO and children) lead to the transaction
(not just the call, the transaction) being invalid . . .

And the DAO attack finally leads to the hard fork of Ethereum into ETC and ETH.
Whenever <address>.transfer() is invoked, it provides an opportunity for control

to flow to a corrupted contract, because the target address could be a contract. If the
address is a contract, when called, the called contract’s fallback function can contain
code to call back the calling contract’s function in a recursive manner that can be
detrimental.

In the code snippet below, for withdrawFund() function to work, we have to make
an external call to the recipient’s address. Therefore, we utilize the withdrawal
design pattern to separate the accounting logic from the transfer logic, making sure
to finish all internal state changes first before invoking the external call. Usually, this
means transfer() is the last step. Moreover, potential cross-function race conditions
such as calling internal functions that call external functions are also designed away.

function withdrawFund(address movie, address recipient, uint
amount,
string expense)

public
stopInEmergency
onlyFilmmaker(movie)
chargeWithdrawFee(amount)
returns (bool)

{
require(recipient != address(0));
require(amount > 0);
require(bytes(expense).length > 0);

Movie(movie).withdrawFund(amount.add(withdrawFee.mul(amount).
div(100)));

emit FundWithdrawn(now, movie, recipient, amount, expense);
recipient.transfer(amount);
return true;

}

Finishing all internal work before making external calls also protects against
denial of service attacks. The called contract’s fallback can always revert, which also
halts the execution of the calling contract. If there are necessary operations further
along, they will never get executed.

By utilizing the withdrawal design pattern to favor pull payments over push
payments, we also avoid denial of service attacks that target the block gas limit.
We could have looped through an array of addresses, pushing payments to the
recipients automatically for their convenience. However, attackers could take advan-
tage of the fact that we are looping through an array of unknown size, creating many

8.2 Attacking Vector 239

corrupt recipient accounts to cause our function to hit the block gas limit whenever it
executes. The effect, our contract becomes unusable.

There are a number of common techniques which help avoid potential reentrancy
vulnerabilities in smart contracts. The first is to use the built-in transfer() function
when sending ether to external contracts. The transfer function only sends 2300 gas
which is not enough for the destination address/contract to call another contract
(i.e. re-enter the sending contract).

The second technique is to ensure that all logic that changes state variables
happen before ether is sent out of the contract (or any external call). It is good
practice to place any code that performs external calls to unknown addresses as the
last operation in a localized function or piece of code execution. This is known as the
checks-effects-interactions pattern.

A third technique is to introduce a mutex. That is, to add a state variable which
locks the contract during code execution, preventing reentrancy calls.

8.2.4 Denial of Service (DOS)

The definition of DDOS attack is making contract un-functional or irresponsive in a
certain time of period or forever. The objective of DDOS attack is not to steal money
from smart contracts, but to make smart contracts un-functional or unresponsive
which block the users of contracts. There are multiple ways to achieve such goal. We
just discuss a few of them.

Iterate Over a Big Mappings or Arrays in a Loop
The following code is to distribute tokens to all investors:

contract DistributeTokens {
address public owner; // gets set somewhere
address[] investors; // array of investors
uint[] investorTokens; // the amount of tokens each investor

gets
// ... extra functionality, including transfertoken()
function invest() public payable {

investors.push(msg.sender);
investorTokens.push(msg.value * 5); // 5 times the wei sent
}

function distribute() public {
require(msg.sender == owner); // only owner
for(uint i = 0; i < investors.length; i++) {

// here transferToken(to,amount) transfers "amount" of
tokens to the address "to"

transferToken(investors[i],investorTokens[i]);
}

}
}

240 8 Develop Secure Contract

distribute () function use a for loop to iterate over an array. General logic is okay.
But if array size becomes super huge, the iteration will lead to exhaustion of GAS.
Thus, distribute() will always fail.

Owner Only Allowed Operations
The following is an ICO contract which need the owner of the contract to set finalize
flag and tokens are allowed to be transferred only when the contract is finalized.

bool public isFinalized = false;
address public owner; // gets set somewhere
function finalize() public {

require(msg.sender == owner);
isFinalized == true;

}
function transfer(address _to, uint _value) returns (bool) {

require(isFinalized);
super.transfer(_to,_value)

}
...

As can be seen from the code above, the contract will be un-functional if the
owner’s private key is lost.

Progressing State Based on External Calls
Sometimes, we have such logic: we need to send some ether to external contract and
move to the next step if the send succeeds. This may incur attack if the send above
always fail due to some unexpected reasons, such as the external contract does not
accept ether or is forbidden tentatively or permanently. It is impossible for contract
execution to move to next step if sending ether always fails.

To avoid exhaustion of GAS(EOG), we propose:

• Do not iterate a huge data structure in the contract. If the data structure can be
manipulated from outside, the situation becomes even worse. We recommend to
use withdrawal pattern which requires participants to withdraw their own tokens
by themselves.

• We should have a fail-safe pattern to avoid malfunction of the contract owner.
The recommendations are

– Create a multi-sig contract and contract owner is only one of the signers.
– Use time lock which allows contract execution after a certain period.
– Add some time out logic for progressive state judgment.

• Create another operation account to solve contract malfunction problem caused
by DoS attack.

8.2 Attacking Vector 241

Block stuffing is a type of attack in blockchains where an attacker submits
transactions that deliberately fill up the block’s gas limit and stall other transactions.
To ensure the inclusion of their transactions by miners, the attacker can choose to
pay higher transaction fees. By controlling the amount of GAS spent by their
transactions, the attacker can influence the number of transactions that get to be
included in the block.

To control the amount of GAS spent by the transaction, the attacker utilizes a
special contract. There is a function in the contract which takes as input the amount
of GAS that the attacker wants to burn. The function runs meaningless instructions in
a loop, and either returns or throws an error when the desired amount is burned.

For example, assume the average GAS price has been 5 Gwei in the last 10 blocks.
In order to exert influence over the next block, the attacker needs to submit trans-
actions with GAS prices higher than that, say 100 Gwei. The higher the GAS price,
the higher the chance of inclusion by miners. The attacker can choose to divide the
task of using 8,000,000 GAS—current gas limit for blocks—into as many trans-
actions as they want. This could be 80 transactions with 100,000 GAS expenditure,
or four transactions with 2,000,000 GAS expenditure.

8.3 Ethereum Smart Contract: Best Practice

Developing secure smart contract is costly. There are already some good summaries
of security guides, such as best practice from Consensys, and security guides from
solidity official site. In this section, we explain some strategies to improve the
security of smart contract.

8.3.1 Fail Early and Fail Loud

A simple and strong best practice is to expose the problem as early and explicit as
possible. Next, have a look at unsafe contract below:

// Unsafe code, DO NOT USE
contract BadFailEarly {

uint constant DEFAULT_SALARY = 50000;
mapping(string => uint) nameToSalary;
function getSalary(string name) constant returns (uint) {
if (bytes(name).length != 0 && nameToSalary[name] != 0) {

return nameToSalary[name];
} else {
return DEFAULT_SALARY;

}
}

}

242 8 Develop Secure Contract

In getSalary function, we need to check the parameter before we return. In the
example above, the problem is the function will return the default value if the
condition is not satisfied. Someone thinks it is a compatibility design. But it will
cover the parameter error which may spread and blow in the future. And it is very
hard to trace back the root cause. Here is an example:

contract GoodFailEarly {
mapping(string => uint) nameToSalary;
function getSalary(string name) constant returns (uint) {
if (bytes(name).length == 0) throw;
if (nameToSalary[name] == 0) throw;
return nameToSalary[name];

}
}

We recommend a coding pattern to separate each condition’s check and error
process. And we can use the modifier for code reuse purpose.

8.3.2 Use Pull Instead of Push

Every time when we transfer ether, we need to take involving contract and potential
code execution into account: A receiver contract may or may not implement a
fallback function; fallback function may throw an exception. So we always need
to handle the situation that sends may fail. A solution to this problem is to use pull
instead of push. Following is a bid example:

// Unsafe code, DO NOT USE
contract BadPushPayments {

address highestBidder;
uint highestBid;
function bid() {

if (msg.value < highestBid) throw;
if (highestBidder != 0) {

// return bid to previous winner
if (!highestBidder.send(highestBid)) {

throw;
}

}
highestBidder = msg.sender;
highestBid = msg.value;

}
}

8.3 Ethereum Smart Contract: Best Practice 243

Contract above uses send function and checks its return value, which appears
reasonable. But bear in mind, send function might trigger code in other contracts. For
example, some bidder address might throw whenever it receives some ether. Since
send will always fail and exceptions will be bubbled up, state will remain
un-changed as before calling send function. This means that no one is able to
continue bid and contract is un-functional. A simple solution to this is to move
payment to a separate function and let each individual user sends pull request for
withdrawing fund.

contract GoodPullPayments {
address highestBidder;
uint highestBid;
mapping(address => uint) refunds;
function bid() external {

if (msg.value < highestBid) throw;
if (highestBidder != 0) {

refunds[highestBidder] += highestBid;
}
highestBidder = msg.sender;
highestBid = msg.value;

}
function withdrawBid() external {
uint refund = refunds[msg.sender];
refunds[msg.sender] = 0;
if (!msg.sender.send(refund)) {
refunds[msg.sender] = refund;

}
}

}

The contract above uses a mapping variable to store the information of all bidders
and provides a withdraw function for refund. If one sends fails, it does not influence
the other send functions. It is a simple pattern but useful.

8.3.3 Condition, Behavior, Interaction

As an extension of the principle of exposing problem as early as possible, a best
practice is to follow the function structure: first, check condition; then update the
state of contract; and at last, interact with other contracts. It will avoid most of the

244 8 Develop Secure Contract

security vulnerabilities if you use the order of condition, behavior, and then inter-
action. Let us have a look at the example below:

function auctionEnd() {
// 1. Conditions
if (now <= auctionStart + biddingTime)

throw; // auction did not yet end
if (ended)

throw; // this function has already been called
// 2. Effects
ended = true;
AuctionEnded(highestBidder, highestBid);
// 3. Interaction
if (!beneficiary.send(highestBid))

throw;
}

}

Code above check state and throw an exception if the required condition is not
satisfied. And it leaves the risky part––interaction with other contracts, to the end of
the function.

8.3.4 Test Case

It costs a lot of time to write test cases. But it will be finally paid off in saving time
spent on regression test. Regression test is designed for finding bugs of components
(which is bug-safe before) caused by newly added functionalities.

8.3.5 Fault Tolerance and Bounty Program

If contract passes the code audit and security review process, we should always be
ready for the worst case. We should have the method to recover securely if a contract
vulnerability is found. Furthermore, we need to identify vulnerability as early as
possible. Here is an example demonstrating how a bounty process works. The
example is a faked token contract with a bug bounty program.

8.3 Ethereum Smart Contract: Best Practice 245

import './PullPayment.sol';
import './Token.sol';
contract Bounty is PullPayment {

bool public claimed;
mapping(address => address) public researchers;
function() {

if (claimed) throw;
}
function createTarget() returns(Token) {
Token target = new Token(0);
researchers[target] = msg.sender;
return target;

}
function claim(Token target) {
address researcher = researchers[target];
if (researcher == 0) throw;
// check Token contract invariants
if (target.totalSupply() == target.balance) {

throw;
}
asyncSend(researcher, this.balance);
claimed = true;

}
}

As to fault tolerance, we need to add an extra security check. A simple solution is
to allow the supervisor of the contract to freeze contract as an emergency mecha-
nism. We can inherit from the following contract:

contract Stoppable {
address public curator;
bool public stopped;
modifier stopInEmergency { if (!stopped) _; }
modifier onlyInEmergency { if (stopped) _; }
function Stoppable(address _curator) {
if (_curator == 0) throw;
curator = _curator;

}
function emergencyStop() external {
if (msg.sender != curator) throw;
stopped = true;

}
}

Stoppable accept a supervisor which can stop the whole contract. We can inherit
from Stoppable and apply modifier stopInEmergency and onlyInEmergency to
correspondent functions. Here is an example:

246 8 Develop Secure Contract

import './PullPayment.sol';
import './Stoppable.sol';
contract StoppableBid is Stoppable, PullPayment {

address public highestBidder;
uint public highestBid;
function StoppableBid(address _curator)

Stoppable(_curator)
PullPayment() {}

function bid() external stopInEmergency {
if (msg.value <= highestBid) throw;
if (highestBidder != 0) {

asyncSend(highestBidder, highestBid);
}
highestBidder = msg.sender;
highestBid = msg.value;

}
function withdraw() onlyInEmergency {
suicide(curator);

}
}

In the example above, the bid can be stopped by a supervisor which is specified in
the constructor. In a normal situation, only the bid function can be used; and in an
emergent situation, the supervisor can step in and activate emergency mode which
makes the bid function no longer working and activate withdraw function. Emer-
gency mode enables supervisor to destroy the contract, recover fund. And in the real
world, recover logic might be more complex (for example: return fund to individual
investor).

8.3.6 Limit the Funds That Can Be Deposited

Another method to protect our contract from attack is restriction. From the return of
investment (ROI) standpoint, an attacker is usually searching high-value contract.
Setting the upper limit of fund which a contract hold will lower the risk of being
attacked. A simple way to do this is to set hard cap. Here is an example:

contract LimitFunds {
uint LIMIT = 1000;
function() { throw; }
function deposit() {

if (this.balance > LIMIT) throw;
...
}

}

8.3 Ethereum Smart Contract: Best Practice 247

In the fallback function, the contract above will reject all payments. Deposit
function first will check if the current balance is above the upper limit: if yes, an
exception will be thrown. A more realistic way is to set a dynamic limit and its
implementation is very easy.

8.3.7 Simple and Modular Code

Security is the distance from the implementation to what the code is expected to
do. Security is very hard to prove, especially when the code set is huge and complex.
And this means:

• Function should small
• File should be small
• Code inter-dependency should be as less as possible
• Put independent logic into a separate module
• Each module should implement just one logic
• Use explicit and easy-to-understand name convention

Please remember, try to write your contract as simple as you can with a modular
and explicit name convention. And it will help others to understand and audit
your code.

8.3.8 Do Not Start Coding from Scratch

As an idiom says: do not re-invent the wheel. And it is also fit for writing a smart
contract. Solidity programmers usually handle money; contract source code and data
are publicly accessible and smart contract platform is in fast growing. As of now,
there are already lots of verified secure code and framework (such as Open Zeppelin)
in market, and there are also some supporting tools such as better type systems,
Serenity Abstractions, and the Rootstock platform.

8.4 Code Audit

As the last resort, if you are not sure about how secure your contract is, or do not
know how to improve it, you can submit the contract for code audit. It is not free and
it is most likely expensive. There are many companies providing such service in
market. For example: New Alchemy founded by blockchain foundation
ex-partner––Peter Venesse, Zeppeline. Besides, there are also several teams doing

248 8 Develop Secure Contract

a great job in formal verification of smart contract. Formal verification is to use
mathematics form to prove smart contract will do exactly what it is expected to do.

8.5 Summary

In summary, this chapter describes the security patterns including:

1. Do not code from scratch and use existing secure framework as much as possible.
2. Fail as early and loudly as possible.
3. Favor pull over push payments.
4. Follow the pattern: conditions, behavior, interactions.
5. Pay attention to platform constraints.
6. Test, test, and test.
7. Set fault tolerance and bug bounty program.
8. Control the amount of funds deposited.
9. Organize the code in a simple and modularized way.

And pay attention to:

• Reentrancy: Make the external call at the end of the function if necessary.
• Send can fail: Must handle the situation when send fails.
• Loops can cross gas limit: When you iterate through state variables, gas usage

will grow with the growing size of state variables. Please note that contract might
be terminated because of the exhaustion of GAS.

• Call stack depth limit: Do not use recursive since stack has constraints on depth
and recursion might fail.

• Timestamp dependency: Do not use the timestamp of blocks since miners can
change them.

We have learned everything to develop Solidity contract. Usually, contract
contains core logic and is not user friendly, we will introduce decentralized APP
which interact with contract on-chain and present input and output in a user
friendly way.

8.5 Summary 249

Part IV
Application

Chapter 9
Decentralized Application (DApp)

9.1 Feature

Decentralized Application (DApp) can be considered as a web application and key
components distributed to P2P network. In this way, DApp lowers the risk of single
point of failure (SPOF) and ensures the user experience. Logic components of DApp
are listed below (Fig. 9.1).

Web Application Infrastructure
DApp has the similar feature as traditional web application. That is to say, DApp
should be able to process Http Request and return Response.

Distribute Data
Data are saved on blockchain.

Distributed Business Logic
Business logic is implemented in smart contracts. Since the smart contract is
deployed on blockchain, it is transparent and open to everyone. The downside is
that it may incur attack.

Client Side Encryption
Since the private key is usually saved on the client side, many transactions need to be
transferred after encryption.

DApp has the following features:

Lower the Risk of Single Point of Failure (SPOF)
The infrastructure on which current web applications depends, such as servers, code,
databases, etc., has the possibility of SPOF in nature. Even Amazon and Aliyun
service sometimes crashed. DApp can largely lower the SPOF risk and increase
availability.

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_9

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_9&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_9#DOI

Lower the Dependency on Centralized Authority
Through smart contract, blockchain provides an untampered, immutable, and audit-
able environment. Any Dapp user can validate the business logic in smart contract
including input, output, state, etc.

Improve Security
The introduction of client side encryption and DApp encryption largely improves
security.

Network Effect
DApp uses public distributed ledger or distributed storage as the basis of trust to
provide identity verification, authentication, authorization, and access control.

Distributed Data Storage
Distributed ledger, IPFS or Swarm. Data can be saved on multiple nodes.

Distributed Business Logic
Ethereum implements business logic in the smart contract, while Hyperledger uses
similar technology—Chaincode. And the smart contract is run on distributed ledger.

Client Side Encryption
Blockchain wallet implements encryption on client side which makes DApp users
can communicate with servers in a secure way or sign transaction data.

Here is a typical DApp overview picture (Fig. 9.2) from the user’s point of view:
user access web site through a browser which supports web3 library, web site read/
write data from the database or directly from blockchain. Web site maintains an
Ethereum full node or connect to an Ethereum full node.

Fig. 9.1 Dapp logic structure

254 9 Decentralized Application (DApp)

Figure 9.3 contains more details which describe steps from the programmer’s
point of view. Contract creation (Steps 1–5) workflow is as below:

1. First, write the smart contract and save into a file with the extension .sol.
2. Compile contract, deploy to testrpc/ganache, and test it.
3. Return bytecode of contract if the test passes.
4. Deploy compiled contract bytecode to blockchain.
5. Return contract address and ABI.

The step to call contract function (Step 6):

6. Frontend call contract function with parameters: contract address, ABI, and
nonce.

The major difference between DApp and the traditional program are:

• All DApp data is public and visible. Certainly, we can encrypt or hash DApp data
to protect data. There is a terminology––code obfuscation for such purpose.

• Users need to pay some fee to run their transaction or the whole decentralized
system will not work. And the payment amount depends on how many resources
are consumed for contract execution. It is called gas cost.

• While considering paying fee for each transaction, user must understand that it
will take some time to run the transaction. This is different with current central-
ized applications. Since the block size is fixed and transactions which each block
can pack are not infinite, the higher the gas price, the higher the priority for
transaction getting packed into block.

Just as building a normal web site or a mobile app, creating a DApp generally
needs computation resources, file storage, external data, money, and payment
system. Table 9.1 shows the progress of DApp tech stack in 2017.

Fig. 9.2 Dapp user’s view

9.1 Feature 255

9.2 DApp Architecture

What makes DApp different from traditional App?

• DApp’s smart contract is not controlled by any centralized entity or organization,
even not controlled by smart contract developer or sponsor.

• No backend.
• Transaction being broadcasted to blockchain and miners being responsible for

executing the related smart contract.

Frontend JavaScript Keystore

Solidity Contract(*,sol)1
4 5 6

2 3

Web3.js

KeySolidity Compiler
(solc) Ethereum Node Key

GethPyEthereumCPP-EthereumTestrpc

Ethereum
Network

Ethereum
Network

Fig. 9.3 Dapp programmer’s view

Table 9.1 Dapp Tech stack status in 2017

Web2.0 Web3.0 Status

Extensibility Amazon EC2 Ethereum, Truebit In progress

File storage Amazon S3 IPFS/Filecoin, Storj In progress

External Data Third-party API Oracle In progress

Income Advertisement, sales Token model Ready

Payment Credit card, Paypal Ethereum, Bitcoin, State Channel, 0x Ready

256 9 Decentralized Application (DApp)

• Smart contract forces some rules on data and money related operations. No one
can change rules once the contract is deployed.

• Smart contract code must be transparent, auditable, and verifiable.
• Transaction must be transparent, auditable, and verifiable.
• Web site must use static files and depend on blockchain as the only database

source.

We mainly discuss Serverless apps, browser plug-in, private node, off-line
signature, and other related problems. Figure 9.4 depicts the structure of a DApp
program.

9.2.1 Client Side

DApp Client can reside everywhere: static web pages, mobile phones, etc. These
contents can be hosted by any cloud service providers, such as AWS, Aliyun,
Google Cloud, GitHub, etc. If cloud service providers provide Swarm, Storj or
IPFS, it is possible that all your contents (web page, resource, etc.) is distributed
in a decentralized way.

How does client side software access blockchain? At the moment, most of DApp
use web3 library. User can use web3 library to connect to blockchain, to query
information, and to send transaction, etc. Alternative solution is to use official Mist
software, or MetaMask browser plug-in.

The following code snippet demos how to check if web3 library is installed
during page load.

window.addEventListener('load', function() {

// Check if web3 object is injected into browser (Mist/MetaMask)
if (typeof web3 !== 'undefined') {
// if web3 object exists, then use Mist/MetaMask as provider
window.web3 = new Web3(web3.currentProvider);

(continued)

BlockChain

Tx/QueryTx/Query

Server
Get/Post

Client

Fig. 9.4 Dapp program
structure

9.2 DApp Architecture 257

} else {
// Plan B: if web3 object does not exist, then use local node +

in-dapp id mgmt /)
window.web3 = new Web3(new

Web3.providers.HttpProvider("http://localhost:8545"));
}

// Start running your app
startApp()

})

9.2.2 Server Side

Why DApp still needs server side program? First, code on-chain cannot communi-
cate with off-line service directly. If code on-chain need to interact with third-party
services, such as external crypto exchange or send/receive email service, we will still
need server side program.

Second, server side program can be used as buffer or index engine. It is common
for client side program to provide search functionality or to validate on-chain data
based on the server side service.

Last but not least, storage and calculation on Ethereum are expensive since they
will cost gas. A typical solution to cut cost is to put storage and calculation offline,
and to keep signature on-chain for validation purpose. Then, how server side
program interact with blockchain?

9.2.2.1 Local Node

A simple method is to set up a local Ethereum node. All interactions with blockchain
are through calling JSON RPC interface. If your program wants to update the state,
you must keep an unlocked account at local. In this situation, you must ensure that
JSON RPC interface held by a local node should not be used by other programs. If
not, other people can access your node and steal your money. To be safe, it is better
to keep as less money as possible in your unlocked account as shown in Fig. 9.5.

9.2.2.2 Off-line Signature

Another solution is to do off-line signature on transactions in client App and then
send transactions to a public node. This solution chooses to believe public nodes
blindly: public nodes cannot tamper transaction information and public nodes cannot

258 9 Decentralized Application (DApp)

selectively relay or not relay transaction or return false query information. In order to
prevent public nodes from tampering, users can send transactions to multiple public
nodes simultaneously. However, doing this way make programming much more
complicated. Please refer to Fig. 9.6.

Such public nodes act a role as the gateway. Infura (infura.io) is one of those most
popular nodes.

9.2.2.3 State-Change Transaction

Solutions above is good enough for query of blockchain. However, if client side
operation will change the contract state on-chain, they are not flawless. As to send
transaction, it is simple if there are mist or Metamask installed on client side: mist
provides a gateway/account for local node used to sign transaction while Metamask
signs transaction on client side and relay transactions to Metamask public nodes. If
there is not Mist or Metamask on client side, client app needs to send transaction
manually.

To run a specific contract function, we need users to send data with enough ether.
We can get data of a function fairly easy through request method.

SimpleToken.at(tokenAddress).transfer.request
("0xbcfb5e3482a3edee72e101be938
7626d2a7e994a", 1e18).params[0].data

// Data return from transfer is:
'0xa9059cbb00
000000000000000000100000000000000000000000000000000
000000000000000000de0b6b3a7640000'

BlockChain

Broadcast

Private Ethereum Node

Submit

ApplicationSign Transaction

Sync Query
Private Ethereum Node

Fig. 9.5 Dapp node structure

Private KeySign TransactionApplication

Submit

Query

Blockchain

Fig. 9.6 Dapp transaction

9.2 DApp Architecture 259

Please make sure that fallback function contains reasonable default fund
processing in case that user lose money if they do something wrong inadvertently.

Another solution is to add a Proxy contract. Once receive some ether, the proxy
contract will run a specific function in our main contract. For example, we can design
a voting program for two options: in our main contract, there are a vote-yes and a
vote-no function. We also deploy two supplementary contracts including the call to
vote-yes or vote-no functions in the main contract only. This method fits for simple
Dapp and largely reduces the coding complexity.

9.2.2.4 Implement Wallet

Another solution is to integrate wallet into applications. App creates a new account
for user and send transaction by itself. In this way, user needs to deposit some ether
beforehand into the new account and program will use these ethers to pay transaction
fee. A more detailed explanation is: app holds the private key of the new account and
sign transactions with this private key, and then send transaction to public nodes for
execution.

This solution requires a lot of programming effort: create account and encryption,
and import/export. Please refer to the implementation of Ethereum-wallet for details.
All transactions must be manually created, signed, and sent to public nodes as raw
transaction. And user also need to do more extra work: configure new account and
save account profile. However, once configuration is completed, user enjoys the
benefit of doing Ethereum transaction at zero cost with no need to install the third-
party software or plug-in.

9.2.3 Workflow

Client and server side can access blockchain simultaneously. A typical solution is to
send requests to blockchain and then listen on events. Here we can use observer
pattern: Client side only listens on the event related to itself, while server side listen
on all events. And we can distinguish event type through indexed parameter with the
event. Figure 9.7 depicts the mechanism.

9.2.3.1 Contract Events

We can create event filter to monitor events selectively.

260 9 Decentralized Application (DApp)

var event = myContractInstance.myEvent({valueA: 23} [,
additionalFilterObject])

// Monitor change of event
event.watch(function(error, result){
if (!error)
console.log(result);

});

// Or pass a callback function to start monitoring
var event = myContractInstance.myEvent([{valueA: 23}] [,
additionalFilterObject] , function(error, result){
if (!error)
console.log(result);

});

Fig. 9.7 Interaction between client/server/blockchain

9.2 DApp Architecture 261

1. Parameters
Object––return value after filtering logs. For example: {“valueA”: 1, “valueB”:

[myFirstAddress, mySecondAddress]}. Default filter value is set to null, which
means to match all events related to the contract.

Object—Filter option. Default filterObject has “address” field set to the con-
tract address. And the first topic is event signature.

Function—(Optional) if a callback function is passed as parameter, then event
monitoring starts instantly with no need to call myEvent.watch(function(){}).

2. Callback return
Object—Event object as below:
address: String, 32 Bytes—Log source address
args: Object—Event parameters
blockHash: String, 32 Bytes—Block hash containing Log
blockNumber: Number—block number containing Log
logIndex: Number—Index of log in block
event: String—Event name
removed: bool—indicate the transaction has been removed from blockchain or

not
transactionIndex: Number– Transaction index for creating Log
transactionHash: String, 32 Bytes—Transaction hash for creating Log

3. Example

The following is an example about monitoring specific events.

// Using existing abi to create contract object
var MyContract = web3.eth.contract(abi);
// Map the contract object to a deployed contract address
var myContractInstance = MyContract.at
('0x78e97bcc5b5dd9ed228fed7a4887c0d7287344a9');

// Listen on event with {some: 'args'}
var myEvent = myContractInstance.myEvent({some: 'args'},
{fromBlock: 0, toBlock: 'latest'});
myEvent.watch(function(error, result){
...

});

// Get all the event log
var myResults = myEvent.get(function(error, logs){ ... });
...
// Stop listening and unload filter
myEvent.stopWatching();

262 9 Decentralized Application (DApp)

9.2.3.2 allEvents

The following is an example about listening in all events:

// Get all contract related events
var events = myContractInstance.allEvents
([additionalFilterObject]);
// Monitor all changes
events.watch(function(error, event){
if (!error)

console.log(event);
});

// Or start monitoring through passing a callback function
var events = myContractInstance.allEvents
([additionalFilterObject], function(error, log){
if (!error)

console.log(log);
});

1. Parameters
Object—Filter option. Default filterObject has address’ field set to the contract

address. And the first topic is event signature and does not support supplementary
topics.

Function—(Optional) If a callback function is passed as parameter, then start
event listening instantly with no need to call myEvent.watch(function(){}).

2. Callback Return
Object—Contract Events

3. Example

var MyContract = web3.eth.contract(abi);
var myContractInstance = MyContract.at
('0x78e97bcc5b5dd9ed228fed7a4887c0d7287344a9');

// Listen on event with {some: 'args'}
var events = myContractInstance.allEvents({fromBlock:
0, toBlock: 'latest'});
events.watch(function(error, result){
...

});

// Get all past log
events.get(function(error, logs){ ... });
...
// Stop listening and unload filter
events.stopWatching();

9.2 DApp Architecture 263

Client can query the status of transaction through transaction ID on-chain. In this
case, please ensure that messages on client and server side are only notifications
which could not be trusted blindly. Regardless of listening on specific event or all
events, please ensure to start operation after enough confirmations have been
reached. Even though a transaction is packed into a block, it is still possible that
the transaction/block could be discarded because of blockchain re-Org. There are
also several popular supporting services for EVM, such as: Filecoin or Storj as
storage services, Truebit as off-line computation service, or Oraclize as oracle
service, etc.

9.3 Ethereum DApp

In this section, we are going to create a casino app. User can bet for a number
between 1 and 10. After total number of bet reaches 100, winner can win a part of
ether bet in the contract. The interface of the game is shown below (Fig. 9.8).

We demo some basic and complicate tricks for DApp development:

• How to deploy a smart contract from scratch
• How to deploy a smart contract to testnet
• How to create a frontend for a DApp
• How to connect to deployed smart contract on-chain from DApp
• How to deploy DApp to decentralized IPFS
• How to use customized IPFS domain name

Technologies we use for this example:

• Database: Ethereum testnet
• Hosting: Free hosting if using IPFS as a decentralized platform
• Frontend: React.js + webpack. Just for demo purpose. Any JavaScript framework

can be chosen

Fig. 9.8 Bid game interface (https://github.com/merlox/casino-ethereum)

264 9 Decentralized Application (DApp)

https://github.com/merlox/casino-ethereum

• Contract’s programing language: Solidity, most popular smart contract program-
ming language up to date

• Frontend contracts: web3.js library used to access smart contract and its methods
• Frameworks: Truffle used to deploy, test and compile our smart contract
• Development server: Node.js used to develop APP locally, using testrpc/Ganache

for testing
• Metamask: Browser plug-in for managing account

9.3.1 Environment Setup

First, we need to install necessary libraries: webpack, react, babel, and web3. We
install version 0.20.0 of web3 (web3@0.20.0) since most up-to-date versions are 1.0
and it is still in Beta testing phase, which is unstable at the moment.

npm i -D webpack react react-dom babel-core babel-loader babel-
preset-
react babel-preset-env css-loader style-loader json-loader
web3@0.20.0

We also need to install a light-weighted web server so that we can access local
web server: http://localhost:8080.

npm i -g http-server

9.3.2 Project

First, install truffle framework. In the following command, -D means dependency
and -g means global.

npm i -D -g truffle

Next, we create Truffle project.

npm init -y
truffle init

9.3 Ethereum DApp 265

Under project root directory, we create src directory and create js and css
directory under it. Src directory is used to manage source code. Under js directory,
we create index.js and index.css. Under Truffle root directory, we create dist
directory, and create index.html in it.

File directory is like below:

contracts/
|-- Migrations.sol
|--migrations/
|--node_modules/
|--test/
|--src/
|-- css/index.css
|-- js/index.js
|--dist/
|-- index.html
|--package.json
|--truffle-config.js
|--truffle.js
|--webpack.config.js

The following is the home page of our DApp––index.html:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-

scale=1.0">
<link href='https://fonts.googleapis.com/css?family=Open

+Sans:400,700'
rel='stylesheet' type='text/css'>

<title>Casino Ethereum Dapp</title>
</head>
<body>

<div id="root"></div>
<script src="build.js"></script>

</body>
</html>

<div id ¼ “root” > </div> tag will contain all react codes injected automatically.
<script src¼ “build.js” > </script> Tag contains the build file generated by webpack.

266 9 Decentralized Application (DApp)

9.3.3 Solidity Programming

First, we create contracts/Casino.sol file which is the main source file of the solidity
contract. All contracts start with the compiler version declaration. So at the begin-
ning of Casino.sol, we specify the compiler version by pragma:

pragma solidity 0.4.20;

Next, we create the whole file:

pragma solidity 0.4.20;
contract Casino {

address public owner;
function Casino() public { // Constructor

owner = msg.sender; // Set contract Owner
}
function kill() public { // self destroy function. Only used by

owner
if(msg.sender == owner) selfdestruct(owner);

}
}

• Address type owner is a super-long string and the value is your Metamask
account. Here we use 0xA4e71aEeAdaA01FD0f15455f67D7d2CAD32EbFcA.

• function Casino() is the constructor and we set the owner of the contract in it.
• function kill() is used to destroy the contract when necessary. Only the owner can

destroy the contract. Once the contract is destroyed, remained ether in the contract
will be returned to the owner’s address. Only use kill() when the contract is
hacked and owner cannot keep the fund in it.

We need to finish the following tasks:

• Record how much money a play bet on a number
• Minimum amount of bet required
• Calculate the total ether bet in the contract
• Variable to save how many people bet
• Determine when to stop bet and declare winner
• Develop a function to send bonus to winners’ account

Main functionalities are:

• Bet a number between 1 and 10
• Create a random number and find winners based on it
• Send ether to winner

9.3 Ethereum DApp 267

We use a struct type in which the mapping type variable is used to save the player
address, bet and bet number. Struct type is like an object and mapping looks like an
array.

Let us have a look at the code:

pragma solidity 0.4.20;
contract Casino {

address public owner;
uint256 public minimumBet; // minimum bet
uint256 public totalBet; // Total bet
uint256 public numberOfBets; // Number of bets
uint256 public maxAmountOfBets = 100; // maximum number of bets
address[] public players; // Player list
struct Player { // definition of each player

uint256 amountBet; // Amount of bet of each player
uint256 numberSelected; // bet number of each player

}
// Mapping map player’s address to his bet information
mapping(address => Player) public playerInfo;
function Casino() public {

owner = msg.sender;
}
function kill() public {

if(msg.sender == owner) selfdestruct(owner);
}

}

Resource: https://github.com/merlox/casino-ethereum/blob/master/contracts/
Casino.sol.

Player is a struct type which defines the amount of bet and bet number of each
player. We use Player to save and track the player’s bet amount and bet number. And
then, we create a mapping named playerInfo.

mapping(address => Player) public playerInfo;

We use address as a key to find its correspondent bid amount and bid number.
And we use players (an array of players) to keep the information of each player so
that we know how to distribute money to winners. Also, we modify constructor in
which we define a minimum bet amount:

function Casino(uint256 _minimumBet){
owner = msg.sender;

if(_minimumBet != 0) minimumBet = _minimumBet;
}

Now we create function Bet(): let the player bet a number between 1 and 10:

268 9 Decentralized Application (DApp)

https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol

pragma solidity 0.4.20;
contract Casino {

. . .
// To bet for a number between 1 and 10 both inclusive
function bet(uint256 numberSelected) public payable {

require(!checkPlayerExists(msg.sender));// Better must be a
player

require(numberSelected >= 1 && numberSelected <= 10);//
number selected must between 1 and 10

require(msg.value >= minimumBet);// Bet amount must larger
than minimumBet

playerInfo[msg.sender].amountBet = msg.value; // save info.
In playerInfo

playerInfo[msg.sender].numberSelected = numberSelected;
numberOfBets++; // number of better increase by 1
players.push(msg.sender); // Add player to players array
totalBet += msg.value; // Add total bet amount

}
}

Resource: https://github.com/merlox/casino-ethereum/blob/master/contracts/
Casino.sol.

1. Keyword payable is a modifier indicating a function can accept ether.
2. require() is like if statement and it must return true or it will stop execution and

return ether to initiator. We use the function require() to ensure that the player
does not bet yet the player bet a number between 1 and 10 and bet amount is
beyond the minimum Bet.

3. msg.sender and msg.value are info for the use which call bet(). Sender is the user
address and value is amount bet.

4. We save information into mapping playerInfo[msg.sender].amountBet ¼ msg.
value;

5. msg.sender is the address of user which call bet().
6. We increase numberOfBets by 1. This variable is a counter recording the total bet

count of the game. When bet count reaches 100, the game starts to calculate the
winning number and distribute bonus accordingly.

7. At last, we add the bet amount to the total bet amount.

Now, look at the first require statement:

require(!checkPlayerExists(msg.sender));

We call checkPlayerExists() to check whether the player has bet since one player
can only bet once. Let us start to write checkPlayerExists function as below:

9.3 Ethereum DApp 269

https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol

pragma solidity 0.4.20;
contract Casino {

. . .
// Go through player array. If existed, return true or return

false.
// Only existed player can bet

function checkPlayerExists(address player) public constant
returns(bool){

for(uint256 i = 0; i < players.length; i++){
if(players[i] == player) return true;

}
return false;

}
// To bet for a number between 1 and 10 both inclusive
function bet(uint256 numberSelected) public payable {

require(!checkPlayerExists(msg.sender));
require(numberSelected >= 1 && numberSelected <= 10);
require(msg.value >= minimumBet);
playerInfo[msg.sender].amountBet = msg.value;
playerInfo[msg.sender].numberSelected = numberSelected;
numberOfBets++;
players.push(msg.sender);
totalBet += msg.value;

}
}

Resource: https://github.com/merlox/casino-ethereum/blob/master/contracts/
Casino.sol.

The constant keyword indicates that the function will not modify states and
therefore will not cause gas consumption. This function is only to read a number.

As the next step, we are going to check whether the bet count exceeds the
maximum number pre-defined. If bet count hit maximum count, then we start to
generate the winning number.

if(numberOfBets >= maxAmountOfBets) generateNumberWinner();

generateNumberWinner() function is to generate a random number between 1 and
10:

pragma solidity 0.4.20;
contract Casino {

. . .
// Geneate a random number between 1 and 10, and decide the winner
function generateNumberWinner() public {
uint256 numberGenerated = block.number % 10 + 1; // This random

(continued)

270 9 Decentralized Application (DApp)

https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol

generator is not secure
distributePrizes(numberGenerated);

}
}

Resource: https://github.com/merlox/casino-ethereum/blob/master/contracts/
Casino.sol.

The function above uses the last bit of current block number plus 1 as the winning
number. For example, if current block number is 438542, then the winning number
is 438542 % 10 ¼ 2 and 2 + 1 ¼ 3. Please note, this function is not secure since it is
easy to guess winning number and miners can mine blocks selectively to benefit
themselves.

Next, let us distribute bonus to winners. This is what distributePrices
(numberGenerated) does:

pragma solidity 0.4.20;
contract Casino {
. . .

// Return lottery to winners
function distributePrizes(uint256 numberWinner) public {

address[100] memory winners; // Create a memory winner array
uint256 count = 0; // winner count
for(uint256 i = 0; i < players.length; i++){

address playerAddress = players[i];
// If bid number is the same as winning number,
// then save player info into winner array, count of

winner increase by 1
if(playerInfo[playerAddress].numberSelected ==

numberWinner){
winners[count] = playerAddress;
count++;

}
delete playerInfo[playerAddress]; // Delete all players

}
players.length = 0; // Delete all player array
uint256 winnerEtherAmount = totalBet / winners.length; //

calculate howmuch bonus each winner deserve
for(uint256 j = 0; j < count; j++){

if(winners[j] != address(0)) // Winner address should not
be 0

winners[j].transfer(winnerEtherAmount);// call
transfer method to send bonus

}
}

}

Resource: https://github.com/merlox/casino-ethereum/blob/master/contracts/
Casino.sol.

The function above mainly implement following:

9.3 Ethereum DApp 271

https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol
https://github.com/merlox/casino-ethereum/blob/master/contracts/Casino.sol

1. Create winner array which is a memory array and will be released after jumping
out of the function. Player will be added into winner array if player’s
numberSelected is the winning number.

2. Calculate the lottery amount based on the number of winners and bid amount for
each winner.

3. Call winners[j].transfer to send ether to each winner.
4. Create an anonymous fallback function with the payable modifier. This function

will return ether in contract to specified address:

// The objective of Fallback function is to ensure that fund in
contract will
// not be lost

function() public payable {}

Fallback function allows us to save received ether. Please refer to this place1 for
full source code of Casino contract. Github has a higher version: it uses Oraclize
service to generate a secure random number. We skip the design and implementation
of Frontend.

9.3.4 Deployment

After installation of IPFS, we run the command below:

ipfs daemon

The command above will create an IPFS node. Next, let us type:

ipfs swarm peers

The command above allows your node’s peers can share the content on your node.

ipfs add -r dist/

This command adds your dist directory into IPFS network. You should see long
hash values generated for your directory. These hash values are unique ID of your
directory files.

1https://github.com/merlox/casino-ethereum.

272 9 Decentralized Application (DApp)

https://github.com/merlox/casino-ethereum

added Qmc9HzLPur2ncuUArLjAaa4t2HrXFycgjUPb6122N6tzi2 dist/
build.js、
added QmZBaGYWsACJ5aCFhW459xHZ8hk4YazX1EQFiSenu3ANfR dist/
index.html
added QmfZoCnPcgmHYmFJqHBcyuFh3FEYrTZqGdGyioSMrAZzw2 dist

Copy hash value and run:

ipfs name publish QmfZoCnPcgmHYmFJqHBcyuFh3FEYrTZqGdGyioSMr
AZzw2

You should see info like below:

Published to QmRDVed784YwKrYAgiiBbh2rFGfCUemXWk3NkD7nWdstER:
/ipfs/QmfZoCnPcgmHYmFJqHBcyuFh3FEYrTZqGdGyioSMrAZzw2

This says that your content has been saved on that URL. And you can check your
content at gateway.ipfs.io/ipns/<your-hash-here>. For example:

gateway.ipfs.io/ipns/
QmRDVed784YwKrYAgiiBbh2rFGfCUemXWk3NkD7nWdstER

Since the current network is pretty large, it will take some time to see Dapp.
Please remember to set Metamask to connect with Ropsten Test Network. If we
modify some media file, we need to run webpack first, then run “ipfs add -r dist/”,
and run “ipfs name publish <the-hash>” to publish the modification. Please note,
hash should be the same as what is before the publishing.

9.4 IPFS DApp

In this section, we will introduce a simple implementation of Dapp based on IPFS.2

This sample will demo how to save information to IPFS and how to interact
with IPFS.

2https://medium.com/textileio/building-an-interplanetary-%C4%91app-from-scratch-
51f9b8be5a74.

9.4 IPFS DApp 273

https://medium.com/textileio/building-an-interplanetary-%C4%91app-from-scratch-51f9b8be5a74
https://medium.com/textileio/building-an-interplanetary-%C4%91app-from-scratch-51f9b8be5a74

9.4.1 Environment Setup

First, we need to install browsersify and Babel library.

yarn add --dev browserify babelify babel-core babel-polyfill
babel-preset-env

We also need to install minify, lint, watch, simplify and node-ecstatic library.

yarn add --dev envify npm-run-all shx standard uglifyify watchify
ecstatic

To run our Dapp based on IPFS, we need to install a browser plug-in:

Google Chrome:
https://chrome.google.com/webstore/detail/ipfs-companion/
nibjojkomfdiaoajekhjakgkdhaomnch

Firefox:
https://addons.mozilla.org/en-US/firefox/addon/ipfs-companion/

Using the browser plug-in is optional. There will be more extra dev work if plug-
in is not installed. Here, our purpose is to demo how to create an IPFS-based Dapp.
So we focus on Dapp development and use IPFS plug-in to save some time.

We use window.ipfs-fallback to instantiate an IPFS node. And we use js-libp2p-
crypto library to do encryption. IPFS browser plug-in will insert a window.ipfs
object for each web page. In this way, any IPFS-based Dapp can detect the existence
of window.ipfs. Window.ipfs-fallback library can detect Window.ipfs object auto-
matically: if loaded, then use it; or automatically revert to the most up-to-date IPFS
version downloaded from CDN.

yarn add window.ipfs-fallback js-libp2p-crypto

9.4.2 Project

First, create project directory:

274 9 Decentralized Application (DApp)

mkdir encryptoid
cd encryptoid

We use NPM to initialize project. We need to answer some project-related
questions.

ubuntu@VM-16-5-ubuntu:~/work/dapp/encryptoid$ npm init

Directory structure is like below:

Encryptoid
|____LICENSE
|____README.md
|____package.json
|____src
| |____index.html
| |____images
| | |____logo.png
| |____main.js
| |____style.css
|____dist
| |____...

Next, we are going to modify package.json to add some compilation commands.

...
"scripts": {

"start": "ecstatic dist",
"clean": "shx rm -rf dist",
"build": "run-s build:*",
"build:copy": "run-p build:copy:*",
"build:copy:html": "shx mkdir -p dist && shx cp src/index.html

dist/index.html",
"build:copy:css": "shx mkdir -p dist && shx cp src/style.css

dist/style.css",
"build:js": "browserify src/main.js -o dist/bundle.js -g

uglifyify",
"watch": "npm-run-all build:* --parallel watch:*",
"watch:js": "watchify -t envify src/main.js -o dist/bundle.js

-v",
"watch:serve": "ecstatic --cache=0 dist",
"test": "standard"

},

(continued)

9.4 IPFS DApp 275

"browserify": {
"transform": [
["babelify", {"presets": ["env"]}],
["envify"]

]
},

...

Resource: https://github.com/textileio/encryptoid/blob/master/package.json.
In package.json, we provide all kind of start commands, such as: start, clean,

build, test, etc.
Entry file: Index.html

<!doctype html>
<html>
<head>

<meta charset="utf8">
<title>Encryptoid ĐApp</title>
<link rel="stylesheet" href="./style.css">

</head>
<body>

<div id="main">
<h1>Welcome to Encryptoid!</h1>

</div>
<script type="text/javascript" src="bundle.js"></script>

</body>
</html>

Resource: https://github.com/textileio/encryptoid/blob/master/src/index.html.
CSS style sheet: Style.css

html, body {
font-family: "Lucida Sans Typewriter", "Lucida Console",

"Bitstream Vera Sans Mono", monospace;
height: 100%;

}
#main {
width: 50%;
margin: 0 auto;
padding-top: 2%;

}

Resource: https://github.com/textileio/encryptoid/blob/master/src/style.css.
Main.js.

276 9 Decentralized Application (DApp)

https://github.com/textileio/encryptoid/blob/master/package.json
https://github.com/textileio/encryptoid/blob/master/src/index.html
https://github.com/textileio/encryptoid/blob/master/src/style.css

We use Async/await model to get IPFS node information in asynchronization
way.

// Import library we need
import 'babel-polyfill' // We need this for async/await polyfills

// Import 2 IPFS-based templates
import getIpfs from 'window.ipfs-fallback'
import crypto from 'libp2p-crypto'

let ipfs

// Create async setup function which run on page load
const setup = async () => {
try {
ipfs = await getIpfs() // Initialize an IPFS Peer node
const id = await ipfs.id() // Get Peer node id
console.log(`running ${id.agentVersion} with ID ${id.id}`)

} catch(err) {
console.log(err) // Just pass along the error

}
}
setup()

Resource: https://github.com/textileio/encryptoid/blob/master/src/main.js.
Next, we add to input boxes to index.html: one is <textarea> and the other is

<input>.

<h1>Welcome to Encryptoid!</h1>
<form id="secret">
<label for="message">Message</label>
<textarea id="message" required rows="5"></textarea>
<label for="password">Password</label>
<input id="password" type="text" required minlength="10"

maxlength="100">
</form>
<button id="button" type="button">Encrypt</button>
<div id="output"></div>

Resource: https://github.com/textileio/encryptoid/blob/master/src/index.html.
We also add some logic to process two input boxes we add above.

// Import library we need
import 'babel-polyfill' // We need this for async/await polyfills

(continued)

9.4 IPFS DApp 277

https://github.com/textileio/encryptoid/blob/master/src/main.js
https://github.com/textileio/encryptoid/blob/master/src/index.html

// Import 2 IPFS-based template
import getIpfs from 'window.ipfs-fallback'
import crypto from 'libp2p-crypto'

let ipfs

// Setup a very simple async setup function to run on page load
const setup = async () => {
try {
ipfs = await getIpfs() // Init an IPFS Peer node
const button = document.getElementById('button')
// Listen on button click event

button.addEventListener("click", (e) => {
e.preventDefault()

// Get input message and password
const message = document.getElementById('message')
const password = document.getElementById('password')

// Compute derived key for AES Encryption
const key = crypto.pbkdf2(password.value, 'encryptoid',

5000, 24, 'sha2-256')

// We just use iv once
const iv = Buffer.from([...Array(16).keys()])
// Create AES object
crypto.aes.create(Buffer.from(key), iv, (err, cipher) => {
if (!err) {
// Call encryption function
cipher.encrypt(Buffer.from(message.value), async (err,

encrypted) => {
if (!err) {

// if no error, then save encrypted content into hashed for
later display

const hashed = (await ipfs.files.add(encrypted))[0]
output.innerText = `/ipfs/${hashed.hash}`

}
})

}
})

})
} catch(err) {
console.log(err) // Just pass along the error
}

}
setup()

Resource: https://github.com/textileio/encryptoid/blob/master/src/main.js.

278 9 Decentralized Application (DApp)

https://github.com/textileio/encryptoid/blob/master/src/main.js

• We use PBKDF2 (Password-Based Key Derivation Function 2) to create deriva-
tion Key which is used for subsequent encryption. In this example, we use fixed
salt and 5000 iterations. The size of key is 24 bytes.

const key ¼ crypto.pbkdf2 (password.value, ‘encryptoid’, 5000,
24, ‘sha2–256’)

• We create a 16 bytes fixed-length Initial Vector (IV). For the real use, we had
better use a random IV.

const iv ¼ Buffer.from([...Array(16).keys()])
• We create AES object (Since we use length 32 bytes, we can use AES 256).

crypto.aes.create(Buffer.from(key), iv, (err, cipher) ¼>
• We pass plain text buffer to encrypt method and encrypted text will be returned to

our callback function.

if (!err) {
const hashed = (await ipfs.files.add(encrypted))[0]
output.innerText = `/ipfs/${hashed.hash}`

}

• We put encrypted messages on IPFS and wait until CID hash returned.
• Our output is CID hash. We send CID hash to the receiver and they can decrypt

the content.

9.4.3 Compile

So, under the root directory of encryptoid project, we use the following command to
compile:

Install dependencies: yarn install
Compile APP: yarn build
Start App: yarn start

Using any browser, we input http://server:8000/ you should see the interface like
Fig. 9.9:

Now we have a simple DApp: it can encrypt information and propaganda through
a distributed Web. Since we are running DApp in the browser and we do not pin
them, DApp files will be garbage-collected after 24–48 h. But the most important is:
encrypted message on IPFS P2P network is accessible and no centralized server can
peek message. And this is the power of decentralization.

9.4 IPFS DApp 279

http://www.server:8000/

Since you have reached here, you should know how to develop DApp with
decentralized storage. Developing a large and complex DAPP is usually error-
prone and we will introduce debug tools and mechanisms in the following chapter.

Fig. 9.9 IPFS Dapp interface (https://github.com/textileio/encryptoid)

280 9 Decentralized Application (DApp)

https://github.com/textileio/encryptoid

Chapter 10
Debug

10.1 Solidity Language

Like other programming languages such as Java, C++, Solidity has some built-in
mechanisms for debugging purpose.

10.1.1 Event

A Solidity event can be defined as follow:

event Deposit(
address indexed _from,
bytes32 indexed _id,
uint _value

);

• Maximum three indexed parameters.
• If an indexed parameter’s is bigger than 32 bytes (eg: string and bytes),

KECCAK256 abstract (Digest) will be saved instead of the actual data.

10.1.1.1 EVM Log Primitives

Ethereum Virtual Machine (EVM) has log0, log1, log2,log3, log4 opcode. EVM log
primitives have the following parameters:

• “topics”: maximum four topics with 32 bytes long each.
• “data”: data is the payload of event and it can be any size of bytes

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_10

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_10&domain=pdf
https://doi.org/10.1007/978-981-15-6218-1_10#DOI

How a Solidity event is mapped to a log primitive?

• All non-indexed parameter will be saved as data.
• Any indexed parameter will be saved as a 32 byte topic

10.1.1.2 The log0 Primitive

Log0 primitive creates a log item with only data field and no topic field. Data Field
can be any length of bytes.

Here is an example

pragma solidity ^0.4.18;
contract Logger {

function Logger() public {
log0(0xc0fefe);

}
}

Now, let us check assembly code after compilation. 0x40 saves the value of free
memory pointer. The first part is to load data into memory, while the second part is to
prepare data on the top of stack.

memory: { 0x40 => 0x60 }

tag_1:
// copy data into memory
0xc0fefe
[0xc0fefe] // constant

mload(0x40)
[0x60 0xc0fefe]

swap1
[0xc0fefe 0x60]

dup2
[0x60 0xc0fefe 0x60]

mstore
[0x60]
memory: {

0x40 => 0x60k8 0x60 => 0xc0fefe
}

// calculate data start position and size
0x20
[0x20 0x60]

add
[0x80]

(continued)

282 10 Debug

mload(0x40)
[0x60 0x80]

dup1
[0x60 0x60 0x80]

swap2
[0x60 0x80 0x60]

sub
[0x20 0x60]

swap1
[0x60 0x20]

log0

Before execution of log0, there are two parameters on stack: {0x60 0x20}.

• Start: 0x60 is a memory pointer for storing data.
• Size: 0x20 (or 32) specify data size.

10.1.1.3 Logging with Topics

The following example uses log2 primitive. The first parameter is data (can be any
bytes), followed by two topics (32 bytes each):

// log-2.sol
pragma solidity ^0.4.18;

contract Logger {
function Logger() public {

log2(0xc0fefe, 0xaaaa1111, 0xbbbb2222);
}

}

Assembly code is very similar. The only difference is that the two topics
(0xbbbb2222, 0xaaaa1111) are pushed to stack:

tag_1:
// push topics
0xbbbb2222
0xaaaa1111
// copy data into memory
0xc0fefe
mload(0x40)
swap1
dup2

(continued)

10.1 Solidity Language 283

mstore
0x20
add
mload(0x40)
dup1
swap2
sub
swap1

// create log
log2

Data is still 0xc0fefe and is copied to memory. Status before the execution of log2
is as below:

stack: [0x60 0x20 0xaaaa1111 0xbbbb2222]
memory: {

0x60: 0xc0fefe
}
log2

The first two parameters specify the memory area of log data and the two new
elements on top of stack is two topics, where each of them has 32 bytes.

10.1.1.4 All EVM Logging Primitives

EVM support five log primitives:

0xa0 LOG0
0xa1 LOG1
0xa2 LOG2
0xa3 LOG3
0xa4 LOG4

284 10 Debug

10.1.1.5 Logging Testnet Demo

pragma solidity ^0.4.18;

contract Logger {
function Logger() public {

log0(0x0);
log1(0x1, 0xa);
log2(0x2, 0xa, 0xb);
log3(0x3, 0xa, 0xb, 0xc);
log4(0x4, 0xa, 0xb, 0xc, 0xd);

}
}

This contract is deployed to Rinkeby test net and URL is: https://rinkeby.
etherscan.io/tx/0x0e88c5281bb38290ae2e9cd8588cd979bc92755605021e78550fbc
4d130053d1

10.1.1.6 Solidity Events

Here is a log event with three non-indexed parameters (uint256 type):

pragma solidity ^0.4.18;
contract Logger {

event Log(uint256 a, uint256 b, uint256 c);
function log(uint256 a, uint256 b, uint256 c) public {

Log(a, b, c);
}

}

Generated log is located at:
https://rinkeby.etherscan.io/tx/0x9d3d394867330ae75d7153def724d062b474b0

feb1f824fe1ff79e772393d395
Data is the parameter of event and is ABI encoded:

00
0001
00
0002
00
0003

10.1 Solidity Language 285

https://rinkeby.etherscan.io/tx/0x0e88c5281bb38290ae2e9cd8588cd979bc92755605021e78550fbc4d130053d1
https://rinkeby.etherscan.io/tx/0x0e88c5281bb38290ae2e9cd8588cd979bc92755605021e78550fbc4d130053d1
https://rinkeby.etherscan.io/tx/0x0e88c5281bb38290ae2e9cd8588cd979bc92755605021e78550fbc4d130053d1
https://rinkeby.etherscan.io/tx/0x9d3d394867330ae75d7153def724d062b474b0feb1f824fe1ff79e772393d395
https://rinkeby.etherscan.io/tx/0x9d3d394867330ae75d7153def724d062b474b0feb1f824fe1ff79e772393d395

There is a topic with 32 byte hash:

0x00032a912636b05d31af43f00b91359ddcfddebcffa7c15470a13ba1992
e10f0

This is the SHA3 hash of Event type signature:

Install pyethereum
https://github.com/ethereum/pyethereum/#installation
> from ethereum.utils import sha3
> sha3("Log(uint256,uint256,uint256)").hex()
'00032a912636b05d31af43f00b91359ddcfddebcffa7c15470a13
ba1992e10f0'

Since one topic is used for event signature, there are only three topics left for
indexed parameters.

10.1.1.7 Solidity Event with Indexed Arguments

Following is an event definition with indexed parameter of type uint256:

pragma solidity ^0.4.18;

contract Logger {
event Log(uint256 a, uint256 indexed b, uint256 c);
function log(uint256 a, uint256 b, uint256 c) public {

Log(a, b, c);
}

}

In above example, there are two topics:

0x00032a912636b05d31af43f00b91359ddcfddebcffa7c15470a13ba1992
e10f0
0x00
0002

• The first topic is a function signature.
• The second topic is the value of indexed parameter

Except indexed parameter, all other data are ABI encoded:

286 10 Debug

000
00001
00
000003

10.1.1.8 String/Bytes Event Parameter

Following code set event’s parameter to string:

pragma solidity ^0.4.18;

contract Logger {
event Log(string a, string indexed b, string c);
function log(string a, string b, string c) public {

Log(a, b, c);
}

}

The transaction is located at: https://rinkeby.etherscan.io/tx/0x21221c2924bbf
1860db9e098ab98b3fd7a5de24dd68bab1ea9ce19ae9c303b56

There are two topics:

0xb857d3ea78d03217f929ae616bf22aea6a354b78e5027773679b7b4a6f
66e86b
0xb5553de315e0edf504d9150af82dafa5c4667fa618ed0a6f19c69b4116
6c5510

• The first topic is a function signature.
• The second topic is a SHA256 digest of string parameter.

In python console, type the following code to verify that the hash value of “b” is
the same as the second topic value:

>>> sha3("b").hex()
'b5553de315e0edf504d9150af82dafa5c4667fa618ed0a6f19c69b411
66c5510'

Log data has two non-indexed string “a” and “c,” which is ABI encoded:

10.1 Solidity Language 287

https://rinkeby.etherscan.io/tx/0x21221c2924bbf1860db9e098ab98b3fd7a5de24dd68bab1ea9ce19ae9c303b56
https://rinkeby.etherscan.io/tx/0x21221c2924bbf1860db9e098ab98b3fd7a5de24dd68bab1ea9ce19ae9c303b56

000
00040
000
00080
00
000001
61000
00000
000
00001
6300
000000

Indexed string parameter is not saved and therefore DApp client cannot restore it.
If you really need them, the solution is to save them twice: indexed and

non-indexed:

event Log(string a, string indexed indexedB, string b);
Log("a", "b", "b");

10.1.2 Assert/Require

Starting from version 0.4.10, Solidity introduced statements: assert (), require (), and
revert (). We use if. . .throw pattern below prior to version 0.4.10:

contract HasAnOwner {
address owner;

function useSuperPowers(){
if (msg.sender != owner) { throw; }
// do something only the owner should be allowed to do

}
}

If the caller is not the owner, function will throw an error—Invalid opcode.
Keyword throw is obsoleted and we use assert, require, and revert instead.

if(msg.sender != owner) { throw; }

288 10 Debug

is equal to the following three statements:

if(msg.sender != owner) { revert(); }
assert(msg.sender == owner);
require(msg.sender == owner);

10.1.2.1 Difference Between Assert and Require

Assert is used to check a status totally unexpected and to ensure that contract can
behave normally under unexpected situation. For example: divided by zero, over/
underflow, etc. require will return unused GAS if failed.

require() is fit for situations below:

• Check user input
• Check response from external contract, For example “require (external.send

(amount))”
• Check condition before state update
• Use require as much as possible
• Use require at the beginning of function

Use assert() in the following situations:

• Check overflow/underflow
• Check invariable value
• Check contract status after some modification
• Avoid impossible situations
• Use assert as less as possible
• Use assert at the end of function

In general, assert is used to avoid the worst scenario, and assert condition should
not be false.

Use revert() in the following situations:

• Mostly like require, but can be used to process complex logic

Opcode

• assert() uses 0xfe opcode to raise an error
• require() uses 0xfd opcode to raise an error

10.1.2.2 Revert

10.1.2.2.1 Revert to Return Some Information

We can use revert to return some error-related information as the following:

10.1 Solidity Language 289

revert(‘Something bad happened’);

or

require(condition, ‘Something bad happened’);

10.1.2.2.2 Revert Return Unused GAS

Throw will exhaust all remained GAS and this becomes candid donation to miners.
The downside is that this will lead to loss of money of user. Comparatively,
REVERT will return unspent gas.

10.1.2.3 Choice Between Revert(), Assert(), and Require()

If revert() and require() return GAS with remaining value, why we still need assert()
which will exhaust all gas? The difference is bytecode output: require function
should be used to ensure correct condition, such as input, contract state variable or
validate the return from external contract, etc. If require is used properly, analytic
tool can evaluate your contract, identifying conditions and function calls which may
cause assert failure. A correct function code will not raise an assert statement; but if it
does happen, this means contract contains severe error. To be clear: if require
statement fails, it is normal and healthy. If assert() fails, that mean some severe
situation occur and developer must fix their program.

If contract follows the programming guide, static analysis and formal verification
tool can check your contract, find or prove some specific cases which could fail the
contract, or prove that your contract is run as expected. So, we use require() to check
conditions and use assert() to avoid exceptions.

10.1.3 Test Case

Experienced programmers always have a good habit of writing unit test case. Now,
we are going to write some test case by using Mocha framework + Nodejs to test
ERC721 program in Sect. 4.3.1. Source code can be downloaded from: https://
github.com/AnAllergyToAnalogy/ERC721

npm install --save mocha ganache-cli web3

290 10 Debug

https://github.com/AnAllergyToAnalogy/ERC721
https://github.com/AnAllergyToAnalogy/ERC721

Next, we need to edit package.json and modify it as below:

"test": "echo \"Error: no test specified\" && exit 1"

to:

"test": "mocha"

Under project root, we create two sub directories:

{your project directory}/test

and

{your project directory}/contracts

We put all compiled contract code in json format under contracts directory. It
looks like: (refer to Sect. 4.3.1 for the content):

• TokenERC721.json
• ValidReceiver.json
• InvalidReceiver.json

And last, we create Token.test.js file under test directory. We declare some stuffs
in it, which is pretty straightforward.

const assert = require('assert');
const ganache = require('ganache-cli');
const Web3 = require('web3');
const provider = ganache.provider({
gasLimit: 10000000
});

const web3 = new Web3(provider);

const compiledToken = require('../contracts/TokenERC721.json');
const compiledValidReceiver = require('../contracts/
ValidReceiver.json');
const compiledInvalidReceiver = require('../contracts/
InvalidReceiver.json');

10.1 Solidity Language 291

Using Mocha, we can use beforeEach to call some code before each test case. We
plan to deploy a contract before running each test case. We declare accounts, token
and initialTokens globally for subsequent test case access.

let accounts;
let token;
const initialTokens = 10;
beforeEach(async () => {

accounts = await web3.eth.getAccounts();

token = await new web3.eth.Contract(JSON.parse(compiledToken.
interface))

.deploy({
data: compiledToken.bytecode,
arguments: [initialTokens]

})
.send({from: accounts[0], gas:'8000000'});

token.setProvider(provider);
});

In our test file, each test case has test code in the form of describe . . . it. . .:

describe('Token Contract',() => {
//All our test cases go here

it('Example test case', () => {
assert(true);

});
});

If you want to run the test file, you need to go to the project root and run the
following command:

npm run test

We use async and await pattern very often. These functions just make async calls
look like “synchronized” a little. Let us have a look at the example below:

Testing creator’s Balance of creator ¼¼ initial token supply.

it('Balance of creator == initial token supply', async () => {
const balance = await token.methods.balanceOf(accounts[0]).

call();
assert(balance == initialTokens);

});

292 10 Debug

Testing creator is able to issue tokens.

it('Creator can issue tokens', async () => {
const toIssue = 2;
const owner = accounts[0];
await token.methods.issueTokens(toIssue).send({

from: owner
});
const finalBalance = await token.methods.balanceOf(accounts

[0]).call();
assert((initialTokens + toIssue) == finalBalance);

});

10.2 Testrpc/Ganache

In Sect. 2.2.1.3, we learned how to install Testrpc/Ganache. Ganache is a private
blockchain running on local computer of Ethereum developer. Ganache provides
a command-line interface which is fit for test automation and continuous integra-
tion. Ganache CLI can be configured to meet all your development needs.
Ganache CLI can process transactions quickly due to no need to wait block
confirmation.

We can use truffle to connect to local Ganache testnet. In order to do this, we need
to modify truffle-config.js file:

module.exports = {
networks: {

development: {
host: "localhost",
port: 8545,
network_id: "*" // Match any network id

},
}

};

Then, we need to deploy the contract to specified network. Here we use—network
switch.

truffle migrate --network testenv

Description of the startup parameters of Ganache:

10.2 Testrpc/Ganache 293

-account: specify private key and account balance to create initial testing
accounts. And it can be set multiple times:

$ ganache-cli --account="<privatekey>,balance" [-
account="<privatekey>,balance"]

Please note: the length of private key is 64 and private key is a hex string starting
with 0x. Account balance can be an integer and it also can be hex string starting with
0x. And the unit is wei. Ganache will not create HD wallet if it is started with–
account.

-u or –unlock: Unlock specified account, or unlock account with specific series
number. The flag can be set multiple times. And it will change the locking state of
specified account when it is used with -secure.

-a: specify testing account number when startup.
-e: ether given to each testing account. Default value is 100 ether.
-b: Specify blockTime of automatic mining. And the unit is second. Default value

is 0, which means automatic mining is turned off.
-d: Create testing accounts based on mnemonic.
-n: By default, lock all test account for third-party signature.
-m: Used to create mnemonic keyword for test account.
-p: Setup listening port, default value is 8545.
-h: Setup monitoring machine, default value is the same as server.listen() in

Nodejs.
-s: Setup seed of Mnemonic words.
-g: Set gas price and default value is 20,000,000,000.
-l: Set upper bound of Gas and default value is 90,000.
-f: Fork chain from a running Ethereum client instance. The input value should be

node’s HTTP address and Port, For example: http://localhost:8545. @ can be used to
specify block number. For example: http://localhost:8545@3645200.

-i or –networkId: specify network ID. Default value is current time, or forked
chain’s network ID.

-db: Set directory for storing chain data. If specified directory contains chain data,
ganache-cli will use it to initialize chain and chain will not be built from scratch.

-debug: Output VM opcode for testing purpose.
-mem: Output statistics information for ganache-cli memory usage, this will

replace standard output.
-noVMErrorsOnRPCResponse: do not send failed transactions as RCP error.

Turning on this flag will make error report compatible with other clients, such as
geth and Parity.

294 10 Debug

10.3 Truffle Debug

Truffle Debugger is a command-line tool in truffle framework. And it supports to
debug smart contracts written in Solidity. When debugger is started up, command-
line prompts a transaction or address list created, a transaction entry and available
command list. Next, we will learn debug commands in details.

10.3.1 Debugging Interface

After the startup of Truffle debugger, you should see:

• Transaction list
• Possible command list
• Transaction entry

Return key is set to execute the latest command. After debugger starts, return key
will execute to next logic unit. And you can hit return key to execute the whole
transaction step by step. And at the same time, you can analyze transaction details.
Command list is as below:

10.3.1.1 (o) Step Over

This command executes current line in Solidity source code, or relative line, or
current expression. If you do not want to step into a function call or contract creation,
or debug quickly, you can use this command.

10.3.1.2 (i) Step Into

This command steps into a function call or contract creation process. Using this
command is to jump into function and debug quickly.

10.3.1.3 (u) Step Out

This command jumps out the current function. Using this command to return to
caller function or terminate the execution of the current transaction.

10.3 Truffle Debug 295

10.3.1.4 (n) Step Next

This command debugs to the next statement or next expression. For example, the
calculation of subexpression will be before calculation of EVM full expression.
Using this command to analyze the calculation logic of EVM.

10.3.1.5 (;) Step Instruction

This command allows you to debug each opcode in EVM. It is useful if you have
interests in compiled bytecode. If you use this command, debugger will print stack
data related to this opcode.

10.3.1.6 (p) Print Instruction

This command prints current opcode and stack data but it does not jump to next
opcode. This command print current opcode and stack data. But it does not jump to
next opcode. Using this command if you want to check current opcode and stack
data after the execution of some logic in the contract.

10.3.1.7 (h) Print This Help

Print available command.

10.3.1.8 (q) Quit

Exit Debugger.

10.3.1.9 (r) Reset

Reset debugger and get back to the beginning of contract.

10.3.1.10 (b) Set a Breakpoint

This command allows you to set breakpoint in contract source code at will.
Breakpoint can be set through line number, relative line number, or line number in
a specified file, or current location.

296 10 Debug

10.3.1.11 (B) Remove a Breakpoint

This command allows you to delete any existing breakpoint. The syntax is very like
(b) command. Type “B all” to delete all breakpoints.

10.3.1.12 (c) Continue Until Breakpoint

This command will run until next breakpoint or the end of the program.

10.3.1.13 (+) Add Watch Expression

This command adds a watch expression and sytax is: +:<expression>.

10.3.1.14 (2) Remove Watch Expression

This command removes a watch expression. Syntax is like: -:<expression>.

10.3.1.15 (?) List Existing Watch Expressions

This command shows all expressions in watch.

10.3.1.16 (v) Display Variables

This command shows current variables and their value. Not all data types support
this command.

10.3.2 Adding and Removing Breakpoints

Here are some examples to add/remove breakpoint.

11: event Generated(uint n);
12:
13: function generateMagicSquare(uint n)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

(continued)

10.3 Truffle Debug 297

debug(develop:0x91c817a1...)> b 23
Breakpoint added at line 23.

debug(develop:0x91c817a1...)> B 23
Breakpoint removed at line 23.

debug(develop:0x91c817a1...)> b SquareLib:5
Breakpoint added at line 5 in SquareLib.sol.

debug(develop:0x91c817a1...)> b +10
Breakpoint added at line 23.

debug(develop:0x91c817a1...)> b
Breakpoint added at this point in line 13.

debug(develop:0x91c817a1...)> B all
Removed all breakpoints.

Please refer to https://truffleframework.com/docs/truffle/getting-started/
debugging-your-contracts#debugging-interface for the details of all debugger
commands.

10.3.3 How to Debug a Transaction

To use debugger, we need to collect transaction-related information, such as trans-
action hash. Then input following command

$ truffle debug <transaction hash>

We use transaction 0x8e5dadfb921dd... as an example.

$ truffle debug
0x8e5dadfb921ddddfa8f53af1f9bd8beeac6838d52d7e0c2fe5085b42a
4f3ca76

The command above will launch the debugger interface.

298 10 Debug

https://truffleframework.com/docs/truffle/getting-started/debugging-your-contracts#debugging-interface
https://truffleframework.com/docs/truffle/getting-started/debugging-your-contracts#debugging-interface

10.3.4 Debug a Foodcart Contract

We have talked a lot about debugger. In the following, we will use a real example of
FoodCart to explain how to debug.1 The following contract implements a simple
food cart; anyone can select food sold online and add them to food cart. And at the
same time, anyone can clear the food cart if ether payments succeed. Before we start,
please check and confirm the environment first:

1. Truffle 4.0 or up
2. Solidity compiler 0.4.24 or up
3. Private blockchain (Ganache CLI v6.1.6 or above)

10.3.4.1 Step 1: Create Contract

First, we create project root directory by typing the following command:

mkdir FoodCart

Then, we enter the project directory and create a truffle project.

cd FoodCart
truffle init

Enter into contract directory and create a contract file named FoodCart.sol.

cd contracts
touch FoodCart.sol

Open any editor and type source code. Source code can be found here.2 We
briefly introduce FoodCart contract:

• State Variable
State variables owner and skuCount are used to store owner and count of food

items; mapping foodItems maps sku to food items.
• Enum Variable

1https://medium.com/ethereum-developers/the-ultimate-end-to-end-tutorial-to-create-and-deploy-
a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
2https://gist.githubusercontent.com/mayorcoded/1fd0b4361e273f18e6d56e30b24cdb36/raw/
cabb4283fee5d73719f284fd10780241b95c4aec/FoodCart.js

10.3 Truffle Debug 299

https://medium.com/ethereum-developers/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://medium.com/ethereum-developers/the-ultimate-end-to-end-tutorial-to-create-and-deploy-a-fully-descentralized-dapp-in-ethereum-18f0cf6d7e0e
https://gist.githubusercontent.com/mayorcoded/1fd0b4361e273f18e6d56e30b24cdb36/raw/cabb4283fee5d73719f284fd10780241b95c4aec/FoodCart.js
https://gist.githubusercontent.com/mayorcoded/1fd0b4361e273f18e6d56e30b24cdb36/raw/cabb4283fee5d73719f284fd10780241b95c4aec/FoodCart.js

State enumeration variable is an user-defined data type which keeps the status
of food items in cart. Enum type can be converted to integer explicitly. For
example: ForSale ¼ 0, Sold ¼ 1.

• Event
Event ForSale and Sold keep information on selling or sold food items. In

javascript, these events can be called by callback function which improves the
interactiveibility of Dapp.

• Struct Variable
Struct variable FoodItem is an user-defined type, containing all info related to

food. All its attributes can be accessed through struct name +.
• Modifier

Modifier doesFoodItemExist, isFoodItemForSale, and hasBuyerPaidEnough
are some function which will be executed before the function call.

• Function
Function addFoodItem, buyFoodItem, and fetchFoodItem are to add food

items to contract, buy food items and retrieve food-related information. Construc-
tor initializes the owner state variable to the deployed contract address. Anony-
mous payable function is able to accept ether.

10.3.4.2 Step 2: Deploy Contract

Next, we deploy the contract to our private blockchain. Under the migrations
directory, we create 2_foodcart_migration.js. Open this file in any editor and input
the following code:

var FoodCart = artifacts.require("./FoodCart.sol");

module.exports = function(deployer) {
deployer.deploy(FoodCart);
};

Resource: https://github.com/mayorcoded/FoodCartTutorial
Code snippet above makes truffle framework deploy FoodCart.sol contract to

local private chain. Open command terminal and enter project directory, type the
following command:

truffle develop

Command above starts to debug our contract and the output is like below
(Fig. 10.1):

300 10 Debug

https://github.com/mayorcoded/FoodCartTutorial

The screen copy shows that blockchain is running and is listening on port 9545; at
the same time, testing accounts are created and the command prompt becomes truffle
(develop)>.

Under truffle(develop) > prompt, type compile command to compile contract.
And compiled objects are stored under build subdirectory:

truffle(develop)> compile

Type “compile” command will generate the following output (Fig. 10.2):
And the last step, we migrate compiled contract to blockchain. Type “migrate”

command and output should be looked like (Fig. 10.3):

truffle(develop)> migrate

Fig. 10.1 Truffle develop Console

10.3 Truffle Debug 301

Fig. 10.2 Truffle compile output

Fig. 10.3 Truffle migrate output

302 10 Debug

10.3.4.3 Step 3: Interact with Contract

Let us interact with the contract: add some fooditem to foodcart, check details of
food item and pay ether to checkout the foodcart. In truffle(develop) > command
prompt, create a foodCart variable and store the deployed contract instance to
foodCart.

truffle(develop)> let foodCart;
truffle(develop)> FoodCart.deployed().then((instance) => {
foodCart = instance; });

We use web3.deployed method to deploy contract and it returns a promise. In
Promise, we save contract instance to foodCart variable.

Next, we try to add some food to cart. First, we add a function which is
responsible for adding fooditems to foodcart and print result on the console.
addFoodItemToCart function accepts food name and price as parameters and add
correspondent food into cart. This function is a wrapper of addFoodItem function in
contract. Besides calling the contract function, this wrapper also formats output to
log. We use the following commands to call addFoodItemToCart function:

truffle(develop)> addFoodItemToCart('Fried Rice', 10);
truffle(develop)> { name: 'Fried Rice',sku: 0, price: 10, state:
'ForSale', foodItemExist: true } //output

truffle(develop)> addFoodItemToCart('Chicken Pepper Soup', 10);
truffle(develop)> { name: 'Chicken Pepper Soup', sku: 1, price:
10, state: 'ForSale', foodItemExist: true } //output

truffle(develop)> addFoodItemToCart('Pepperoni Pizza', 50);
truffle(develop)> { name: 'Pepperoni Pizza', sku: 2, price:
50, state: 'ForSale', foodItemExist: true } //output

Now we have three food items in cart. Let us clear the cart. Before we pay, we
need to know payment address from which we will get ether. When we start the local
blockchain, truffle already creates ten testing accounts automatically and each
account has 100 ether. We create a variable to save these address/account for
subsequent use.

truffle(develop)> const buyerAddress = web3.eth.accounts[1];
truffle(develop)> buyerAddress
'0x26EeCca51f64cA3a5Daa61b041a50ACdD4626442'

10.3 Truffle Debug 303

buyFoodItemFromCart function accepts itemSku and food count as parameters,
allowing us to buy some food. Ether for payment is from the account saved in
buyerAddress variable. From our previous transaction, we know the sku of Fried
Rice is 0 and its price is 10 wei. So, under truffle(develop) > command prompt, we
use these values to call buyFoodItemFromCart:

let buyFoodItemFromCart = (itemSku, amount) => {foodCart.
buyFoodItem(itemSku,
{from: buyerAddress, value: amount}).then((trxn) => { const
details = trxn.logs[0].args;
details.sku = details.sku.toNumber();
details.price = details.price.toNumber();
details.state = trxn.logs[0].event;
console.log(details);
});
}

From the output, the status of Fried Rice is sol, and foodItemExist is false, which
indicates that the food is not on sale any more.

10.3.4.4 Step 4: Debug Contract

Now, we already learn the mechanism about how the contract works. Next, we will
introduce some error and then use debugger to debug errors and fix them. In order to
debug a transaction, we need to know transaction hash. Under truffle(develop)>,
type command debug [transaction hash], and use debug command until we found the
root cause of errors.

We will try the following invalid transactions:

• Try to buy a food item not in the cart
• Try to buy a food item with the price lower than the sale price

To start debugging, we need to open a new terminal and run truffle develop
logger: go to FoodCart project root directory and run truffle develop --log.

FoodCart $ truffle develop --log

We should see the following output:

Connected to existing Truffle Develop session at http://
127.0.0.1:9545/

304 10 Debug

Logger connects to an existing port, monitoring transaction events and record
transactions to logs including transaction hash, block ID, etc.

10.3.4.4.1 Illegal Transaction 1: Try to Buy a Food Item that Does Not Exist

We already add some food items to cart and their skus are 0, 1, 2. We try to buy a
non-existing item whose sku is 6. The try will generate information:
UnhandledPromiseRejectionWarning: Error: VM Exception while processing trans-
action: revert . . ., and it does not tell us much clue for the root cause (Fig. 10.4).

In log, the most important content is transaction hash:
0x8e82d82090ce8cdbf7937763757a02bbbf7593b7bc0b4e60af1bed608cfcc9a3.
Using this transaction hash, we can debug transaction and identify the root cause. So
we copy transaction hash and under truffle(develop)>, we type “debug your-
trasanction-hash” and Output is like below (Fig. 10.5):

From the screen capture above, we can find that debug command is run properly:
debugger compile transaction, collect transaction data, get address influenced, and
deployed contract address, and list a series of available commands. The most
frequently used command is “step next” which track all opcodes of transaction,
step by step. Typing enter or n will execute “step next.”

Under debug(develop:0x8e82d820...) > prompt, keep hit enter key to follow the
code flow to the place where transaction fails. In our example, we need to run eight
steps (which means hit enter key nine times) to reach the place where problem occur.
Let us have a look at the output after four steps (Fig. 10.6):

From the screen copy above, we find that buyFoodItem function is called on line
64. But before the execution of the function, the modifier doesFoodItemExist on line
64 is called to check if there are food items in food cart. On line 33, we see that
require function on line 33 was used to ensure that the foodItemExist attribute of
food with specified sku is true. Then, let us check what happens next (Fig. 10.7):

Fig. 10.4 Invalid transaction output

10.3 Truffle Debug 305

Fig. 10.5 Debug Transaction on Turffle Console

Fig. 10.6 Execute four steps of Foodcart.sol on Truffle Debug Console

306 10 Debug

From the screen copy above, we find that transaction terminates on line
33 because require function fails. The food item we want to buy does not exist in
food cart. Require function throw a state-reverting exception. And this exception
rolls back all state change and return an error to caller. We can use Truffle Debugger
to debug this contract.

10.3.4.4.2 Illegal Transaction 2: Try to Pay an Amount Less Than the Price
of a Food Item

In this transaction, we try to buy food with a price lower than the sale price. In “step
3: Interacting with the smart contract,” we add three food items. Let us try to buy
“Chicken Pepper Soup” (sku ¼ 1) and the price is 10 wei. Under truffle
(develop) > command prompt, invoking buyFoodItem function to buy food with
the price lower than the sale price.

truffle(develop)> buyFoodItemFromCart(1, 5);
truffle(develop)> (node:40269)
UnhandledPromiseRejectionWarning: Error: VM Exception while
processing transaction: revert

Fig. 10.7 FoodCart.sol output after require on Truffle Debug Console

10.3 Truffle Debug 307

It can be expected that the transaction will fail with not many details about the
error. In order to debug the transaction, we go to log console and copy transaction
hash. On my local machine, transaction hash is 0x495ac8917b6b0a6fd5ac
9965d74d116cd4072157fe466429a08ea6fdadf401e5. We use this transaction hash
to start debugger.

truffle(develop)> debug
0x495ac8917b6b0a6fd5ac9965d74d116cd4072157fe466429a08ea6fdad
f401e5

We first use step next command to track the transaction. By this way, it shows all
opcodes executed to exception. Using enter key to execute opcode continuously as
below (Fig. 10.8):

From above, we could see that on line 44, modifier hasBuyerPaidEnough is run
before buyFoodItemFromCart function. This modifier requires the buyer’s bidding
price is more than the sale price of the food item. And our bidding price does not
meet this condition. So we need to send enough ether to buy food.

10.4 Remix Debug

Remix official URL is at: https://remix.ethereum.org/. Here is the main panel of
remix3.

Fig. 10.8 Debug transaction on Truffle debugger conbsole

3https://zhuanlan.zhihu.com/p/38102679

308 10 Debug

https://remix.ethereum.org/
https://zhuanlan.zhihu.com/p/38102679

Using Remix to code and test the smart contract is easy and simple. Remix is an
online editor maintained by Ethereum foundation (Fig. 10.9).

Using Remix makes it easy to develop and debug Solidity program. And remix
also can auto-compile and audit code real-timely. If everything is ready, we can
choose “Injected Web3” (through Metamask) to deploy our contract to a real
network. And the most important is: remix can create a virtual network in the
browser to test our contract quickly. If we select “JavaScript VM” under run tab,
remix will create five external accounts for use and each account is pre-allocated
100 ethers (Fig. 10.10).

We provide necessary parameters to create contract and then hit “Deploy” button
(Fig. 10.11).

After the deployment, an instance of our contract is created in our local network.
Remix will create input fields for each function in our contract automatically
(Fig. 10.12).

Remix provides a console at the bottom, showing all the interaction with the
contract (Fig. 10.13).

For each interaction with blockchain, there is a “Debug” button on the right.
Clicking it will jump to “Debugger” tab as below (Fig. 10.14):

The interface is straightforward: we can Step in, Step over, Step Out, Step back,
continue, etc. It is easy to learn by doing. And we can check the situation of Memory,
Stack, Storage, Calldata while executing each step, which is really helpful in
learning the logic of the program.

Fig. 10.9 Remix: main interface

10.4 Remix Debug 309

Fig. 10.10 Remix: run tab

Fig. 10.11 Remix: contract deployment

Fig. 10.12 Remix: deployed contract interface

310 10 Debug

10.5 Other Debug Tools

10.5.1 JEB

You can download the demo version from https://www.pnfsoftware.com/jeb/
demoevm. The installation package is relatively big, more than 160 M. JEB’s
main function is as below:

• Given EVM code specified, JEB de-compiler can de-compile it into pseudo-
Solidity source code.

• Through EVM code analysis, JEB can determine the contract’s public and private
methods, which includes decompiled implementation of public method.

• In the situation with no ABI, code analysis can determine method name, event
name, and their prototype.

• De-compiler will also try to recover some advanced feature:

– Some popular interface such as ERC20, ERC721, multi-sign wallet, etc.;
– Storage variable and type;
– Function modifier
– Function payable attribute
– Trigger including event name
– address.send() or address.transfer()
– Pre-compiled contract call

10.5.2 Porosity

Porosity source code is https://github.com/comaeio/porosity. You need to download
the source code and compile it by using Visual Studio (Fig. 10.15).

Fig. 10.13 Remix: console output

10.5 Other Debug Tools 311

https://www.pnfsoftware.com/jeb/demoevm
https://www.pnfsoftware.com/jeb/demoevm
https://github.com/comaeio/porosity

C:\dev\Coins\porosity-master\porosity\x64\Debug>porosity.exe
parse: Please at least provide some byte code (--code) or run it

in debug mode

(continued)

Fig. 10.14 Remix: debugger tab

312 10 Debug

(--debug) with pre-configured inputs.
Porosity v0.1 (https://www.comae.io)
Matt Suiche, Comae Technologies <support@comae.io>
The Ethereum bytecode commandline decompiler.
Decompiles the given Ethereum input bytecode and outputs the

Solidity code.
Usage: porosity [options]
Debug:

--debug - Enable debug mode. (testing only - no
input parameter needed.)

Input parameters:
--code <bytecode> - Ethereum bytecode. (mandatory)
--code-file <filename> - Read ethereum bytecode from file
--arguments <arguments> - Ethereum arguments to pass to

the function. (optional, default data set provided if not provided.)
--abi <arguments> - Ethereum Application Binary

Interface (ABI) in JSON format. (optional but recommended)
--hash <hashmethod> - Work on a specific function, can be

retrieved wit --list. (optional)

Features:
--list - List identified methods/functions.
--disassm - Disassemble the bytecode.
--single-step - Execute the byte code through our VM.
--cfg - Generate a the control flow graph in

Graphviz format.
--cfg-full - Generate a the control flow graph in

Graphviz format (including instructions)
--decompile - Decompile a given function or all the

bytecode.

Fig. 10.15 Porosity compilation result

10.5 Other Debug Tools 313

10.5.3 Binary Ninja

In order to de-compile the smart contract, we can use the Etherplay plug-in of Binary
Ninja. Binary Ninja is a premium software, and its official url is https://arvanaghi.
com/blog/reversing-ethereum-smart-contracts/ (Fig. 10.16).

In this section, we introduce all kinds of debug tool: built-in features, command-
line tools, and IDEs. At last, we will explore a little bit about WebAssembly which is
believed to be the future of smart contract programming.

Fig. 10.16 Binary Ninja interface

314 10 Debug

https://arvanaghi.com/blog/reversing-ethereum-smart-contracts/
https://arvanaghi.com/blog/reversing-ethereum-smart-contracts/

Part V
Prospect

Chapter 11
WebAssembly(WASM)

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based virtual
machine. Wasm is designed as a portable target for compilation of high-level languages like
C#/C++, enabling deployment on the web for client and server applications. WebAssembly
defines an Abstract Syntax Tree (AST) which gets stored in a binary format.

(https://webassembly.org/)

WASM is not designed for some specific CPU directly, but instead is an inter-
mediate representation that can be compiled to actual machine code by the

© Springer Nature Singapore Pte Ltd. 2021
G. Zheng et al., Ethereum Smart Contract Development in Solidity,
https://doi.org/10.1007/978-981-15-6218-1_11

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6218-1_11&domain=pdf
https://webassembly.org/
https://doi.org/10.1007/978-981-15-6218-1_11#DOI

WebAssembly runtime environment. WASM can be thought as the Universal
Virtual Machine where developer write ANY code once, and it runs everywhere.

“Regular” assembly is a set of primitive instructions that can be compiled into
executable machine code for different physical hardware, such as x86 and arm
opcodes. On contrary, WASM is a set of primitive instructions that are compiled
into executable code running on a platform-agnostic and stack-based virtual
machine.

The foremost goal of WebAssembly is to compile source code written in different
programming languages (such as C++, Rust, Go, etc.) to “execute at native speed.”
That is to say, even though the WASM code might have been loaded by a browser,
the code will execute nearly as fast as if it were a native binary.

11.1 Blame for EVM

Generally, a blockchain virtual machine (VM) should satisfy the following
requirements:

• Secure
Anyone should be able to write and deploy smart contract and no one can

violate their permissions in using the smart contract platform.
• Deterministic

Smart contract running on different nodes, platform, OS, or even architecture
will produce the same results.

• Generic
Using the primitives provided by VM, developers basically are able to imple-

ment any business logic.
• Efficient

To end user, running smart contract should be affordable and economically
feasible, since the execution costs multiple computation resources, such as CPU,
memory, and hard disc. All these resources are provided by miners and they need
to get paid for providing such service and resources.

Ethereum was the first practical implementation, and by far the most-used
blockchain platform currently. Roughly speaking, EVM meets the requirement of
being secure and deterministic. However, even though EVM is a Turing-complete
machine, it is still not generic and efficient. An important method to improve
efficiency is just-in-time(JIT) compilation technology which means compiling
code to native code while running. The pre-requirement of applying JIT technology
is that the language must be interpreted for complexity analysis, which is not easy
and simple for EVM.

Over the past three years of smart contract development, the cryptocurrency
community has reported smart contracts written in Solidity subverted by a variety
of bugs and exploits, such as the DAO exploit and the Parity multi-sig wallet bug. It
is common to point the finger to the preponderance of unsafe smart contracts on the

318 11 WebAssembly(WASM)

Solidity smart contract language and its many variants. However, as we described in
Chapter 8, Solidity has some of the worst flaws:

• Lack of inspection and traceability
• Opacity and illegibility of code on-chain
• Expensive, slow, and dangerous calls to external smart contracts

All the deficiencies stem directly from foundational design decisions in the
architecture of the EVM. Solidity still has a long way to go in terms of programmer
productivity and language expressiveness. In this section, we examine some of the
flaws in detail.

11.1.1 Lack of Modern VM Feature

A well-constructed VM seeks to protect language designers from dangerous mis-
takes and support efficient construction with central features like dispatch support,
name resolution, and so forth. The EVM, however, fails to provide similar guaran-
tees. Ethereum aims to be a global computation machine. It is possible to have a
Turing-complete machine without subjecting developers to risks that modern VMs
have eliminated for decades. Instead, the EVM disregards this wisdom and expects
the programming languages that compile to it to address them.

The EVM is too complex to be safe in the austerity of its bytecode language and
native functionality. And it does not contain enough of the security features of a
proper VM by construction. If the EVM were to adopt a stricter, Turing-incomplete
computational model, it could approach the safety guarantees of Bitcoin bytecode.
On the other hand, if the EVM offered features that one would expect from a modern
VM, then it would approach the low-level safety afforded by machines such as the
Java Virtual Machine (JVM).

Hence, any programming language targeting the EVM must contend with its
unsafe design choices and lack of modern VM features. The EVM leaves many
features and critical components of its execution model unhandled, forcing language
designers to manually implement them. For example, the EVM leaves the following
features up to the smart contract language:

• True library support
• Richer data types
• Direct support and enforcement of interfaces/APIs

11.1.2 Human Readability

As shown in Chapter 6, currently, the EVM bytecode from compilation of Solidity
program is hardly human-readable like below.

11.1 Blame for EVM 319

608060405234801561001057600080fd5b506040516020806103ee833981
0180604052810190808051906020019092919050505080600081905550806
00160003373ff1673ffffff
ffffffffffffffffffffffffffffffffff168152602001908152602001600
02081905550506103608061008e6000396000f30060806040526004361061
0057576000357c01000
00000000000900463. . .
5600a165627a7a7230582041e440ef41138511bd018bb2004da6344b9aeb2
49ba3cedf943e1e5d786bf67a0029

EVM treat bytecode as a target machine code and it is impossible to read Solidity
contract on-chain if the source code is not uploaded. In doing so, EVM loses the
critical safety feature of making contract readable on-chain. This introduces a lot of
complexity in debugging and developing due to cognitive overhead.

In contrary to Ethereum, Bitcoin provides a safe, simple, and legible bytecode
language intended to guarantee the consistency and correctness of programs running
on the blockchain. It offers a minimal instruction set and uses bytecode primarily to
keep payloads small. It was never intended to be a compile target for a general-
purpose language. These deliberate, language-level restrictions minimize the cogni-
tive overhead of understanding coding logic so that developers can reason more
effectively about their own code as well as the code of others. Indeed, experienced
Bitcoin developers can read and interpret Bitcoin opcodes directly.

As an alternative, Pact (Kadena project) takes a different approach to provide an
interpreted language. As shown in history, if a programming language cannot
provide inlining, caching, and “just-in-time” optimization, an interpreted language
can out-perform its compiled competitor, while offering superior legibility.

11.1.3 Expensive and Slow

Contract running on the EVM utilize an opaque and “top-down” execution model: In
order for EVM to find a particular function to run, EVM load entire content of the
smart contract as a whole black box and run opcodes from beginning. It lacks the
modern VM feature of “load and execute on demand.” For example, JVM allows to
load function individually and to call it directly with the support of namespace and
modular design. EVM execution model is simply impractical to write many pro-
grams since the amount that a user would have to pay in order to use the software
makes it economically infeasible.

More, EVM does not provide standard libraries which is a common feature of
modern VMs. Ideally, if smart contracts had access to a standard library, these
function calls should be able to redirect many common tasks to the standard library
rather than implementing them in the smart contract directly. Executing every single
instruction in a user smart contract will costs GAS. Every time forcing developers to

320 11 WebAssembly(WASM)

pay significant extra gas just for setting up basic functionality makes running and
deploying smart contracts on the EVM much more expensive.

In EVM, a solution for cost control is to use built-in contracts. For example, we
may find a lot of ERC20 contract using the following safe Math library.

library SafeMath {

/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns

(uint256 c) {
// Gas optimization: this is cheaper than asserting 'a' not

being zero, but the
// benefit is lost if 'b' is also tested.
// See:

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {

return 0;
}

c = a * b;
assert(c / a == b);
return c;

}

/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns

(uint256) {
// assert(b > 0); // Solidity automatically throws when

dividing by 0
// uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this

doesn't hold
return a / b;

}

/**
* @dev Subtracts two numbers, throws on overflow (i.e. if

subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns

(uint256) {
assert(b <= a);
return a - b;

}

(continued)

11.1 Blame for EVM 321

/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns

(uint256 c) {
c = a + b;
assert(c >= a);
return c;

}
}

Resource:https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/
contracts/math/SafeMath.sol

Safe Math library is provided by openzeppline team and went through compre-
hensive code review by community. So, it is believed to be strong and safe and is
recommended as a best practice. Using it as a built-in contract/library is to save gas
and to avoid external calls (which is believed to lower risk). However, from a bigger
viewpoint, is it reasonable to include exactly same code in many ERC20 contracts?
To be frank, including safe Math library in smart contract looks clumsy: it needs
more space and lead to slower execution of the function. In summary, built-in
solution is an unsatisfying workaround that can mitigate gas cost but do nothing to
improve the efficiency of EVM’s execution model.

11.1.4 Dangerous

In addition to being slow and expensive, external calls (call and delegatecall
opcodes) on the EVM are deeply unsafe. Because a calling contract is not able to
determine what in-contract references are valid in some other contract, external call
just call the code at reference address blindly. There is absolutely no protection at
runtime from a reference referring to a malicious code. For example, in Parity wallet
issue, wallets called a central core contract which was deleted subsequently. All the
funds in those wallets are locked up due to the disappearance of the contract.
Another example is the unsafe contract reference for “user” account (EOA) in
DAO hack. Calling it from a malicious contract account triggered the default method
which execute send method inexplicably to initiate the recursion exploit.

11.1.5 No Support of Multi-Sig and Upgradable Contract

In Ethereum, each contract or account has an address, which is a hash representation
of public key. The consequence of this design approach disallows the native support
of multi-sig contract and makes it impossible to upgrade a contract at a particular

322 11 WebAssembly(WASM)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

address (it is a design choice derived from the belief of “Code is law” which is
advocated by Ethereum team). Since Ethereum does not have any name base
resolution, it is also impossible to do code dispatch in Ethereum. Without code
dispatch and name-based resolution, there would be no way to detect if code at an
address is upgraded. To make situation much worse, the singular address format
(which means one signature only for one address) forces all Ethereum contracts to be
single signature. And in order to support multi-sig functionality, developer need to
use more expensive solutions, such as built-in contract, or multiple transaction calls.

Due to the single signature approach of Ethereum, there are a lot of solutions in
market which aims to fill the gap: proxy contract, multi-sig wallet, etc. And for sure,
such workarounds are more expensive and add more complexity to contract
development.

11.2 Web Assembly

From the webassembly’s official web site (webassembly.org): "WebAssembly or
wasm is a new portable, size, and load-time-efficient format suitable for compilation
to the web." So, WebAssembly is an excellent candidate for your technical archi-
tecture if creating computation-intensive and high-performance web apps.

11.2.1 Features

WebAssembly has the following superior features:

11.2.1.1 Performance—Near Native Speed

WebAssembly allows us to run code at near native speed which supports many other
languages. It allows us to develop CPU-intensive calculations and executions on the
frontend. With the support of WASM, it will allow us to create applications that were
once only possible on the desktop, such as word processors, complex simulations,
image editing software, and games. We can implement performance critical stuff in
various modern languages, such as C++, Rust and Golang, and compile it into
WASM. On the frontend, WASM file can be imported like a standard JavaScript
module. By using different languages, we can take advantage of common hardware
capabilities available on a wide range of platforms. And that is the true power
of WASM.

In general, WebAssembly is faster than JavaScript because:

• Less time to fetch WebAssembly because it is more compact than JavaScript in
text form, even when compressed. This means fast-delivery and low latency

11.2 Web Assembly 323

http://webassembly.org

• Less time to decode WebAssembly than to parse JavaScript.
• Less time to compile and optimize because WebAssembly is closer to machine

code than JavaScript. And it already has gone through optimization on the
server side.

• No need to reoptimize because WebAssembly has types and other information
built in, so the JavaScript engine does not need to speculate when it optimizes the
way it does with JavaScript.

• Less time to execute WebAssembly because there are fewer compiler tricks and
gotchas that the developer needs to know to write consistently performant code.
Moreover, WebAssembly’s set of instructions are much more fit for machines.

• No need for garbage collection since the memory is managed manually.

11.2.1.2 No Plugins

We do not need to install browser plug-in since most of mainstream browsers
implemented WASM standard at the moment. Following chart shows the cutting-
edge status quo of WASM-supported browsers (Fig. 11.1).

11.2.1.3 Work with JavaScript

WASM works perfectly with JavaScript in both directions. WASM can manipulate
DOM object, events in a similar way to JavaScript. And JavaScript can trigger the
execution of appropriate WASM code just like restful API and RPC call.

11.2.1.4 Portability

With the support of WASM, we will be able to easily port massive libraries of
existing C and C++ apps to the web. As toolchains and the WASM spec evolve, apps
built other languages like Java or Python will also be supported. To port existing
apps or libraries, we need to go through the 3-step process: (1) develop app/library
using whatever WASM-supported programming language appropriate; (2) compile
the code into WASM format; (3) JavaScript engine of WASM-supported browser
translate the WASM code and run it (Fig. 11.2).

Fig. 11.1 WASM-supported browsers. https://caniuse.com/#search¼webassembly

324 11 WebAssembly(WASM)

https://caniuse.com/#search=webassembly
https://caniuse.com/#search=webassembly

11.2.1.5 Readability

WebAssembly code defines an AST (Abstract Syntax Tree) represented in a binary
format. You can author and debug in a text format so it is readable. A WASM file is
looked like as below. And it is a simple function from the WASM specification tests:

(module
(func (param i32) (param i32) (result i32)

get_local 1
(block (result i32)

get_local 0
get_local 0
br_if 0
unreachable

)
i32.add

)
)

You should be able to interpret the WASM code if well-trained.

11.2.2 WebAssembly Runtime

In the world, there are several teams working on WebAssembly runtime environ-
ment, such as KWASM, Microwasm, and EWASM. Since EWASM is the primary
candidate to replace the EVM as part of the Ethereum 2.0 “Serenity” roadmap and
EWASM is also proposed for adoption on the Ethereum mainnet (EWASM, 2019),
we are going to shed some light on EWASM.

The main goals of EWASM is to enhance performance and support smart contract
development across an increasing number of languages including C++, Rust, etc.
EWASM defines the EWASM Contract interface (ECI) and Ethereum Environment
Interface (EEI). Any programming language which can implement ECI and EEI can
be used to write smart contract.

EWASM proposes following integration path for existing languages (Fig. 11.3):

Fig. 11.2 WASM working mechanism

11.2 Web Assembly 325

• For existing smart contract programming languages, such as Solidity and Vyper,
EWasm suggests to compile them into Yul, and then to coding backend (such

as LLVM). And finally to deploy it on EWASM testnet
• For existing programming languages, such as Rust, Go, and C++, Ewasm sug-

gests to compile them to coding backend (such as LLVM and emscripten) and
then to deploy it on EWASM testnet

11.3 Golang + WASM

Starting from Go 1.11, WebAssembly is shipped with the syscall/js package. The
syscall/js package allows our Go code to interact with JS references, mainly through
the js.Value type with methods such as Get(), Set() or Invoke(). If installed correctly,
syscall/js package can be found under $GOROOT/misc/wasm (Fig. 11.4).

11.3.1 Basic Usage

Under $GOROOT/misc/wasm, there are 2 files we want to talk about:
(1) Wasm_exec.js is the glue provided by Go team and it encapsulates a global
Go object. (2)Wasm_exec.html demonstrates how to interact with backend written
in Go. Here is the content of wasm_exec.html:

EWASM11 vm

RustSolidity

Yul

Vyper

Fig. 11.3 EWASM
working flow

326 11 WebAssembly(WASM)

<!doctype html>
<!--
Copyright 2018 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file.
-->
<html>

<head>
<meta charset="utf-8">
<title>Go wasm</title>

</head>

<body>
<!--
Add the following polyfill for Microsoft Edge 17/18 support:
<script src="https://cdn.jsdelivr.net/npm/text-

encoding@0.7.0/lib/encoding.min.js"></script>
(see https://caniuse.com/#feat=textencoder)
-->
<script src="wasm_exec.js"></script>
<script>

if (!WebAssembly.instantiateStreaming) { // polyfill
WebAssembly.instantiateStreaming = async

(continued)

Fig. 11.4 Wasm directory

11.3 Golang + WASM 327

(resp, importObject) => {
const source = await (await resp).

arrayBuffer();
returnawaitWebAssembly.instantiate

(source, importObject);
};

}

const go = new Go();
let mod, inst;
WebAssembly.instantiateStreaming(fetch("test.

wasm"), go.importObject).then((result) => {
mod = result.module;
inst = result.instance;
document.getElementById("runButton").

disabled = false;
}).catch((err) => {

console.error(err);
});

async function run() {
console.clear();
await go.run(inst);
inst = await WebAssembly.instantiate(mod,

go.importObject); // reset instance
}

</script>

<button onClick="run();" id="runButton" disabled>Run</
button>
</body>

</html>

As can be seen from above, to interact with backend in Golang, we need to:

• Include wasm_exec.js into <Head> tag
<script src="wasm_exec.js"></script>

• Instantiate WebAssembly and should be polyfilled for unsupported browsers
WebAssembly.instantiateStreaming

• Create Go object for later use
const go = new Go();

• Fetch WASM file into browser
WebAssembly.instantiateStreaming(fetch("test.wasm"), go.

importObject)
In the example, we fetch test.wasm. Actually, we can fetch whatever WASM

file we want.

328 11 WebAssembly(WASM)

11.3.2 Hello WASM Example

In this section, we start WASM programming with a simple Hello world sample like
below. The file name is main.go

package main

import "fmt"
func main() {

fmt.Println("Welcome to WASM!")
}

Then we need to use the following command to compile the go file above into
WASM

Linux

GOOS=js GOARCH=wasm go build -o main.wasm

Windows

E:\projects\SourceCode\Chapter11\helloworld>set GOOS=js
E:\projects\SourceCode\Chapter11\helloworld>set GOARCH=wasm
E:\projects\SourceCode\Chapter11\helloworld>go build -o main.
wasm main.go

Here GOOS is the target “operating system” which in this instance is JavaScript,
and GOARCH is the architecture which in this case is WebAssembly (WASM)
(Fig. 11.5).

The output should be the same as below if everything runs smoothly. A new
file—main.wasm is created (Fig. 11.6).

And then, we need to adjust index.html to fetch main.wasm (Fig. 11.7):
To verify, we need to start a simple http server and the most important step is to

enable httpserver to accept content-type—“application/wasm.” If you are using
nginx for test purpose, you need to update mime.types file under nginx configuration
directory. Here, we use SimpleHTTPServer written in Python and we need to tweak
a little bit to respond wasm request correctly. The code (server.py) is like below:

Fig. 11.5 Set environmental variables

11.3 Golang + WASM 329

import http.server
from http.server import HTTPServer, BaseHTTPRequestHandler
import socketserver

PORT = 8099

Handler = http.server.SimpleHTTPRequestHandler

Handler.extensions_map={
'.wasm': 'application/wasm',
'.manifest': 'text/cache-manifest',
'.html': 'text/html',
'.png': 'image/png',

'.jpg': 'image/jpg',
'.svg': 'image/svg+xml',
'.css': 'text/css',
'.js': 'application/x-javascript',
'': 'application/octet-stream', # Default
}

httpd = socketserver.TCPServer(("", PORT), Handler)

print("serving at port", PORT)
httpd.serve_forever()

Fig. 11.7 Nodejs code to fetch main.wasm

Fig. 11.6 Successful build result

330 11 WebAssembly(WASM)

Resource: https://gist.github.com/HaiyangXu/ec88cbdce3cdbac7b8d5
And in command prompt window, we type the command:

python server.py

It should look like below if everything works OK (Fig. 11.8).
Then we open any browser and type localhost:8099 to access the page—index.

html (Fig. 11.9):
You should see a “Run” button and main.wasm is loaded correctly (check the

panel on the right above). And click “Run” button, you should see our welcome
message in console output (Fig. 11.10).

Fig. 11.8 Simple Python HTTP server supporting wasm content

Fig. 11.9 index.html

Fig. 11.10 Run button console outputl

11.3 Golang + WASM 331

https://gist.github.com/HaiyangXu/ec88cbdce3cdbac7b8d5

11.3.3 Interaction Between Golang and Frontend JavaScript

Usually, in a professional App, there will be a lot of interactions between backend
and frontend. For example: manipulating DOM elements from Go module; invoking
frontend methods and waiting for callback from backend. Here we will summarize
how Go module interacts with front JavaScript.

11.3.3.1 From Go to JS

In syscall/js package, there is a new type js.Value available. Following table is
member APIs of js.Value:

No API Description

1 js.Value.Get()
js.Value.Set()

Retrieve and set properties on an Object value

2 js.Value.Index()
js.Value.SetIndex()

Retrieve and set values in an Array value

3 js.Value.Call() Calls a method on an Object value

4 js.Value.Invoke() Invokes a function value

5 js.Value.New() Invokes the new operator on a reference representing a JS type

6 js.Value.Int()
js.Value.Bool()

Retrieve a JavaScript value in its corresponding Go type

7 js.Undefined() js.Value corresponding to JS’s undefined

8 js.Null() js.Value corresponding to JS’s null

9 js.Global() js.Value giving access to JS’s global scope

10 js.ValueOf() Returns the corresponding js.Value

Following code snippet shows how to use js package to manipulate DOM. It is
easy to understand because of its similarity to JavaScript syntax.

func setup() {
window = js.Global()
doc = window.Get("document")
body = doc.Get("body")

windowSize.h = window.Get("innerHeight").Float()
windowSize.w = window.Get("innerWidth").Float()

canvas = doc.Call("createElement", "canvas")
canvas.Set("height", windowSize.h)
canvas.Set("width", windowSize.w)
body.Call("appendChild", canvas)

(continued)

332 11 WebAssembly(WASM)

// red laser dot canvas object
laserCtx = canvas.Call("getContext", "2d")
laserCtx.Set("fillStyle", "red")

}

11.3.3.2 From JS to Go

In Go 1.12, there is a new js.Func() type, which represents a Go function wrapped in
order to be used as a JS callback. Its counterpart in Go 1.11 is js.Callback(). Here is a
simple example showing how to implement callback and send control over to
frontend.

package main

import (
"fmt"
"syscall/js"

)

var done = make(chan struct{})

func main() {
callback := js.NewCallback(printMessage)
defer callback.Release()

setPrintMessage := js.Global().Get("setPrintMessage")
setPrintMessage.Invoke(callback)
<-done

}

func printMessage(args []js.Value) {
message := args[0].String()
fmt.Println(message)
done <- struct{}{}

}

Several key points we need to pay attention to are:

• Channel
Since the callback function is implemented in a dedicated goroutine, main

goroutine needs to wait for the callback to be called. Channel (“done” in example
above) is used to inform main goroutine of the end of execution of callback
function

11.3 Golang + WASM 333

• Release the callback
Once we create a new callback function as js.Callback or js.Func, it is always a

best practice to release it before the wasm binary terminate.
• Need to re-instantiate each time

On frontend, we need to instantiate WebAssembly everytime when we call
backend methods. This may cause a performance issue. And certainly, we have
solution to improve it.

11.3.4 Solidity to WASM

We have discussed a lot above about WASM. But the question is: how does WASM
ameliorate smart contract programming in Solidity? The idea here is: if EVM
support WASM, programmers can use whatever programming language they prefer,
such as Go, Swift, Rust, Ruby, C++, and OCaml, to develop smart contract. The only
requirement is that the programming language selected should be able to be com-
piled into WASM format which is supported by different platforms, such as different
browsers (Chrome/Firefox. . .), OSs (windows/linux. . .), and CPUs (x86/ARM. . .).
In this way, EVM can enjoy the benefit provided by mature platforms and their
low-level infrastructures which are believed to be safer and more stable since they
already run in production longer enough than Ethereum.

During the 2019 Ethereum Foundation Devcon5 in Osaka, Japan, Second State
demonstrated the alpha release of its SOLL compiler project. It is the world’s first
LLVM-based toolchain that can compile Solidity smart contracts into WebAssembly
bytecode and successfully deploy onto the official EWasm (Ethereum flavored
WebAssembly) testnet. SOLL project is located at https://github.com/second-state/
soll and it contains practical examples about how to compile and deploy an ERC20
contract into WASM.

Thanks for reading this far!!!

334 11 WebAssembly(WASM)

https://github.com/second-state/soll
https://github.com/second-state/soll

	Preface
	About the Book Structure

	Intended Audience
	Acknowledgement
	Contents
	Part I: Preliminary
	Chapter 1: Basic Concepts
	1.1 Ethereum
	1.1.1 Asynchronized Cryptography
	1.1.1.1 Diffie-Hellman Algorithm
	1.1.1.2 Private/Public Key
	1.1.1.3 Encryption
	1.1.1.4 Verifying Signature

	1.1.2 Cryptographic Hash Function
	1.1.3 Peer-to-Peer Network
	1.1.4 Blockchain
	1.1.5 Ethereum Virtual Machine (EVM)
	1.1.6 Node
	1.1.7 Miner
	1.1.8 Proof of Work (PoW)
	1.1.9 Decentralized App (DApp)
	1.1.10 Solidity

	1.2 Smart Contract
	1.3 GAS
	1.3.1 Why GAS?
	1.3.2 Components of GAS
	1.3.2.1 GAS Cost
	1.3.2.2 GAS Price
	1.3.2.3 Gas Limit

	1.4 Ether (ETH)
	1.5 Account
	1.6 Transaction

	Chapter 2: Preparation
	2.1 A Simple Example
	2.2 Tool Preparation
	2.2.1 Development Environment
	2.2.1.1 Node Setup
	2.2.1.2 Web3 Installation
	2.2.1.3 Ganache
	2.2.1.4 Truffle Installation (Fig. 2.3)

	2.2.2 Development Tools
	2.2.2.1 Introduction of Remix
	2.2.2.2 Introduction of Infura
	2.2.2.3 Introduction of Metamask
	2.2.2.3.1 Install Metamask
	2.2.2.3.2 MetaMask
	2.2.2.3.3 Function of Metamask

	2.2.2.4 Introduction of Mist
	2.2.2.5 Other Tools

	2.2.3 Blockchain Explorer

	2.3 Testing Environment
	2.3.1 Metamask Switching Between Testing Environments
	2.3.2 Obtain Testing Coins
	2.3.3 Connect to Testing Environment

	2.4 Ethereum Source Code Compilation

	Part II: Solidity Basics
	Chapter 3: Solidity Basics
	3.1 Sol File Structure
	3.1.1 Pragma
	3.1.2 Import
	3.1.3 Comment
	3.1.3.1 Code Comment
	3.1.3.2 Document Comment

	3.1.4 Contract
	3.1.5 Library
	3.1.6 Interface

	3.2 Structure of Contract
	3.3 Variable
	3.3.1 Value Type
	3.3.1.1 Boolean
	3.3.1.2 Integer
	3.3.1.3 Address
	3.3.1.4 Fixed Byte Arrays
	3.3.1.5 Rational and Integer Literals, String Literals
	3.3.1.6 Enum
	3.3.1.7 Function Types
	3.3.1.7.1 Internal Function
	3.3.1.7.2 External Function

	3.3.2 Reference Type
	3.3.2.1 Variable-Length Byte Array (Bytes)
	3.3.2.2 String
	3.3.2.3 Array
	3.3.2.4 Struts

	3.3.3 Mapping
	3.3.4 Special Case

	3.4 Operators
	3.5 Statement
	3.5.1 Conditional Statement
	3.5.2 Loop
	3.5.3 Miscellaneous

	3.6 Data Location
	3.7 Modifier
	3.7.1 Standard Modifier
	3.7.1.1 Internal Modifier
	3.7.1.2 External Modifier
	3.7.1.3 Public Modifier
	3.7.1.4 Private Modifier
	3.7.1.5 Constant Modifier
	3.7.1.6 View Modifier
	3.7.1.7 Pure Modifier
	3.7.1.8 Payable Modifier
	3.7.1.9 Difference Between Modifiers
	3.7.1.9.1 External and Public
	3.7.1.9.2 Internal vs External

	3.7.2 Self-defined Modifier

	3.8 Event
	3.8.1 Return Value to UI
	3.8.2 Async Trigger with Data
	3.8.3 Cheap Storage
	3.8.4 Indexed Parameter in Event

	3.9 Inheritance
	3.9.1 Single Inheritance
	3.9.2 Multi-Inheritance

	3.10 Miscellaneous
	3.10.1 Built-in Variable
	3.10.1.1 Special Variable
	3.10.1.2 Mathematical and Cryptographic Functions
	3.10.1.3 Address Related
	3.10.1.4 Contract Related

	3.10.2 Special Unit
	3.10.2.1 Currency Unit
	3.10.2.2 Time Unit

	3.10.3 Type Cast and Inference
	3.10.3.1 Implicit Conversion
	3.10.3.2 Explicit Conversion

	3.10.4 Exception
	3.10.5 Assembly

	Chapter 4: Solidity Advanced Topics
	4.1 Keyword ``This´´
	4.2 ERC20 Interface
	4.2.1 Methods
	4.2.1.1 totalSupply
	4.2.1.2 balanceOf
	4.2.1.3 transfer
	4.2.1.4 transferFrom
	4.2.1.5 approve
	4.2.1.6 allowance

	4.2.2 Events
	4.2.3 OpenZeppline

	4.3 ERC721 Interface
	4.3.1 ERC721 Protocol
	4.3.1.1 Token Ownership
	4.3.1.2 Token Creation
	4.3.1.3 Transfer and Allowance
	4.3.1.4 Burning
	4.3.1.5 Wallet Interface

	4.3.2 Metadata
	4.3.3 Enumerable Extension
	4.3.3.1 Interface
	4.3.3.2 Instance
	4.3.3.3 totalSupply
	4.3.3.4 tokenByIndex
	4.3.3.5 tokenOfOwnerByIndex
	4.3.3.6 transferFrom
	4.3.3.7 burnToken
	4.3.3.8 issueTokens

	4.3.4 ERC165 Protocol

	4.4 Call Between Contracts
	4.4.1 Function Call
	4.4.2 Dependency Injection
	4.4.3 Message Calls
	4.4.4 Return Value of Contract Call

	4.5 Basic Algorithms
	4.6 Using Golang to Interact with Contract
	4.6.1 Contract Source
	4.6.2 Project Creation
	4.6.3 Using Golang to Interact with Contract
	4.6.4 Local Test
	4.6.5 Connect to an Ethereum Node
	4.6.6 Create JSON Key for Our Account
	4.6.7 Validation

	Part III: Solidity Advanced Features
	Chapter 5: Application Binary Interface (ABI)
	5.1 Memory Structure
	5.2 Function Selector
	5.3 Type Definition
	5.4 Data Presentation in EVM
	5.4.1 Presentation of Fixed-Length Data Type
	5.4.1.1 Zero Value
	5.4.1.2 Presentation of Struct
	5.4.1.3 Fixed-Length Array

	5.4.2 Presentation of Dynamic Data Type
	5.4.2.1 Mapping
	5.4.2.2 Dynamic Array

	5.5 Encode
	5.5.1 A Simple Example
	5.5.2 An Example of External Call
	5.5.3 ABI Encode for External Method Call
	5.5.3.1 Fixed-Size Data Type
	5.5.3.2 Dynamic Data Type

	5.6 ABI Programming

	Chapter 6: Operation Principles of Smart Contract
	6.1 Design Pattern
	6.1.1 Contract Self-Destruction
	6.1.2 Factory Contract
	6.1.3 Name Registry
	6.1.4 Mapping Iterator
	6.1.5 Withdrawal Pattern

	6.2 Save Gas Costs
	6.2.1 Mind the Data Types
	6.2.2 Store Values in Byte-Encoded Form
	6.2.3 Compressing Variables with the SOLC Compiler
	6.2.4 Compressing Variables Using Assembly Code
	6.2.5 Concatenating Function Parameters
	6.2.6 Using Merkle Proofs to Reduce Storage Load
	6.2.7 Stateless Contracts
	6.2.8 Storing Data on IPFS
	6.2.9 Bit-Compaction
	6.2.10 Batching
	6.2.11 Reading and Writing Separation on Storage Struct
	6.2.12 uint256 and Direct Memory Storage
	6.2.13 Assembly Optimization

	6.3 Assembly
	6.3.1 Stack
	6.3.2 Calldata
	6.3.3 Memory
	6.3.4 Storage

	6.4 Deconstruct Smart Contract
	6.4.1 Contract Creation
	6.4.1.1 Get Free Memory Pointer
	6.4.1.2 Payable Check
	6.4.1.3 Get Constructor Parameters
	6.4.1.4 Constructor Body
	6.4.1.5 Copy Contract Body Code to Memory
	6.4.1.6 Return Running Status

	6.4.2 General Part of Contract Body
	6.4.2.1 Get Free Memory Pointer
	6.4.2.2 Calldata Check
	6.4.2.3 Function Selector
	6.4.2.4 Function Wrapper

	6.4.3 Contract Bodies
	6.4.3.1 Body of the Function totalSupply()
	6.4.3.2 Body of the Function balanceOf()
	6.4.3.3 Body of the Function transfer()

	Chapter 7: Upgradable Contract
	7.1 Solution
	7.1.1 Proxy Contracts
	7.1.2 Separate Logic and Data Contracts
	7.1.3 Separate Logic and Data Through Key-Value
	7.1.4 Partially Upgradeable Strategies
	7.1.5 Comparison
	7.1.6 Simple Proxy Contract

	7.2 Generic Proxy to Ethereum Call
	7.3 Storage
	7.3.1 Inherited Storage
	7.3.2 Eternal Storage
	7.3.3 Unstructured Storage

	7.4 Augur
	7.4.1 Contract Deployment
	7.4.2 Storage Deployment

	7.5 Colony
	7.5.1 Contract Deployment
	7.5.2 Storage

	7.6 Summary

	Chapter 8: Develop Secure Contract
	8.1 History
	8.2 Attacking Vector
	8.2.1 Solidity Related
	8.2.1.1 Overflow/Underflow
	8.2.1.2 Solidity Modifier
	8.2.1.3 Floating Points and Precision
	8.2.1.4 Tx.Origin Authentication
	8.2.1.5 Unchecked CALL Return Values
	8.2.1.6 Unexpected Ether

	8.2.2 Platform Related Attack
	8.2.2.1 Platform Constraint
	8.2.2.2 Race Conditions/Front Running
	8.2.2.3 Uninitialized Storage Pointers
	8.2.2.4 Entropy Illusion
	8.2.2.5 Block Timestamp Manipulation
	8.2.2.6 External Contract Referencing
	8.2.2.7 Short Address/Parameter Attack

	8.2.3 Reentrancy (THE DAO Hack)
	8.2.4 Denial of Service (DOS)

	8.3 Ethereum Smart Contract: Best Practice
	8.3.1 Fail Early and Fail Loud
	8.3.2 Use Pull Instead of Push
	8.3.3 Condition, Behavior, Interaction
	8.3.4 Test Case
	8.3.5 Fault Tolerance and Bounty Program
	8.3.6 Limit the Funds That Can Be Deposited
	8.3.7 Simple and Modular Code
	8.3.8 Do Not Start Coding from Scratch

	8.4 Code Audit
	8.5 Summary

	Part IV: Application
	Chapter 9: Decentralized Application (DApp)
	9.1 Feature
	9.2 DApp Architecture
	9.2.1 Client Side
	9.2.2 Server Side
	9.2.2.1 Local Node
	9.2.2.2 Off-line Signature
	9.2.2.3 State-Change Transaction
	9.2.2.4 Implement Wallet

	9.2.3 Workflow
	9.2.3.1 Contract Events
	9.2.3.2 allEvents

	9.3 Ethereum DApp
	9.3.1 Environment Setup
	9.3.2 Project
	9.3.3 Solidity Programming
	9.3.4 Deployment

	9.4 IPFS DApp
	9.4.1 Environment Setup
	9.4.2 Project
	9.4.3 Compile

	Chapter 10: Debug
	10.1 Solidity Language
	10.1.1 Event
	10.1.1.1 EVM Log Primitives
	10.1.1.2 The log0 Primitive
	10.1.1.3 Logging with Topics
	10.1.1.4 All EVM Logging Primitives
	10.1.1.5 Logging Testnet Demo
	10.1.1.6 Solidity Events
	10.1.1.7 Solidity Event with Indexed Arguments
	10.1.1.8 String/Bytes Event Parameter

	10.1.2 Assert/Require
	10.1.2.1 Difference Between Assert and Require
	10.1.2.2 Revert
	10.1.2.2.1 Revert to Return Some Information
	10.1.2.2.2 Revert Return Unused GAS

	10.1.2.3 Choice Between Revert(), Assert(), and Require()

	10.1.3 Test Case

	10.2 Testrpc/Ganache
	10.3 Truffle Debug
	10.3.1 Debugging Interface
	10.3.1.1 (o) Step Over
	10.3.1.2 (i) Step Into
	10.3.1.3 (u) Step Out
	10.3.1.4 (n) Step Next
	10.3.1.5 (;) Step Instruction
	10.3.1.6 (p) Print Instruction
	10.3.1.7 (h) Print This Help
	10.3.1.8 (q) Quit
	10.3.1.9 (r) Reset
	10.3.1.10 (b) Set a Breakpoint
	10.3.1.11 (B) Remove a Breakpoint
	10.3.1.12 (c) Continue Until Breakpoint
	10.3.1.13 (+) Add Watch Expression
	10.3.1.14 (-) Remove Watch Expression
	10.3.1.15 (?) List Existing Watch Expressions
	10.3.1.16 (v) Display Variables

	10.3.2 Adding and Removing Breakpoints
	10.3.3 How to Debug a Transaction
	10.3.4 Debug a Foodcart Contract
	10.3.4.1 Step 1: Create Contract
	10.3.4.2 Step 2: Deploy Contract
	10.3.4.3 Step 3: Interact with Contract
	10.3.4.4 Step 4: Debug Contract
	10.3.4.4.1 Illegal Transaction 1: Try to Buy a Food Item that Does Not Exist
	10.3.4.4.2 Illegal Transaction 2: Try to Pay an Amount Less Than the Price of a Food Item

	10.4 Remix Debug
	10.5 Other Debug Tools
	10.5.1 JEB
	10.5.2 Porosity
	10.5.3 Binary Ninja

	Part V: Prospect
	Chapter 11: WebAssembly(WASM)
	11.1 Blame for EVM
	11.1.1 Lack of Modern VM Feature
	11.1.2 Human Readability
	11.1.3 Expensive and Slow
	11.1.4 Dangerous
	11.1.5 No Support of Multi-Sig and Upgradable Contract

	11.2 Web Assembly
	11.2.1 Features
	11.2.1.1 Performance-Near Native Speed
	11.2.1.2 No Plugins
	11.2.1.3 Work with JavaScript
	11.2.1.4 Portability
	11.2.1.5 Readability

	11.2.2 WebAssembly Runtime

	11.3 Golang + WASM
	11.3.1 Basic Usage
	11.3.2 Hello WASM Example
	11.3.3 Interaction Between Golang and Frontend JavaScript
	11.3.3.1 From Go to JS
	11.3.3.2 From JS to Go

	11.3.4 Solidity to WASM

